Основные свойства систем. Общие понятия систем, признаки, свойства, классификация Что означает понятие целостность системы

ОСНОВЫ СИСТЕМНОЙ КОНЦЕПЦИИ: ПОНЯТИЯ, СУЩНОСТЬ, АТРИБУТЫ

Программная аннотация

Происхождение понятия система. Целостность системы. Эволюция взглядов на систему. Подходы к определению системы. Свойства социально-экономической системы.

Язык описания системы. Понятия, характеризующие строение и деятельность системы. Элемент системы. Среда. Связь. Целостность системы. Цель системы.

Атрибуты системы. Целостность – коренной атрибут системы. Эмерджентность и ее проявление в системе.

Внешняя среда и система. Закрытая (замкнутая) и открытая системы.

Понятия, характеризующие строение и функционирование системы. Структура системы. Сетевая и иерархическая структуры. Сложность системы и подходы к ее определению Состояние и параметры системы. Статическая и динамическая системы. Поведение системы. Ситуация. Возмущения.

Опорный конспект лекции

2.1. Определение понятия система. Удивительное единство и гармония мироздания издавна поражали воображение людей. Непостижимая сложность и взаимообусловленность явлений и процессов не давали покоя ни древним мыслителям, ни их нынешним потомкам - физикам, биологам, кибернетикам, философам, экономистам. В стремлении раскрыть источник самодвижения природы и общества, познать в них причинно-следственные связи и закономерности исследователи от поколения к поколению обогащали знания о системах и шли к современному представлению о них.

Своим происхождением категория “система” обязана греческому слову systē ma, означающему в переводе “целое, составленное из частей, соединение ”. В те незапамятные времена, когда мудрецы Древней Греции создавали свое учение о строении Вселенной и мучительно искали ее движущее начало, стало складываться и воззрение о системах. От проницательного взгляда Гераклита, Демокрита, Аристотеля не ускользнули сложность и противоречивость созерцаемых ими систем, будь то звездные скопления или взращиваемые злаки.

Примечательным в этом отношении является воззрение Гераклита. Он полагал, что мир всегда был, есть и будет вечно живым огнем, закономерно воспламеняющимся и снова закономерно угасающим. Все течет, но в этом течении господствует логос (мировой разум) как закон. При этом во всем объединены противоположности и существует скрытая гармония.

Между тем приведенное выше определение системы, отмечая ее важнейшее качество - целостность, было слишком общим и абстрагировалось от присущих системе черт. Становилось очевидным, что целостность придает системе сочленение ее элементов, благодаря чему она отличается от простой суммы, совокупности составляющих ее компонент. Поэтому оказалось необходимым осмыслить понятия целого и части и отношение между ними.

К проблеме целого и части проявили интерес уже в глубокой античности. Так, Аристотель следующим образом понимал сущность этих категорий: “Целым называется то, у чего не отсутствует ни одна из тех частей, состоя из которых оно именуется целым от природы, а также то, что так объемлет объемлемые им вещи, что последние образуют нечто одно…”. Тем самым целое не только объединяет в себе его части, но и выступает качественно новым образованием.

Выяснение природы целого и его частей подвело к исследованию способа их взаимодействий, которые устанавливаются между элементами и порождают систему как таковую. Вследствие этого в определение системы стали включать существующие в ней связи между элементами.

В результате системами стали называть “множество элементов, находящихся в отношениях и связях друг с другом, образующих определенную целостность, единство”. Процитированное из Большого энциклопедического словаря, такое определение системы является сегодня наиболее универсальным и употребительным. Его преимуществом является безотносительность к природе систем, которая накладывает специфику на их строение и функционирование и может быть учтена в определении конкретной системы .

В ряде определений резонно акцентируется внимание на многосвязности и взаимозависимости элементов системы, ввиду чего она не может быть разложена на автономные части. В последнем случае система переходит в иное качество или просто утрачивает себя.

Кстати, этот исход подметил еще Гегель: “Целое, хотя оно и состоит из частей, перестает, однако, быть целым, когда его делят…”. Отсюда целостность системы предполагает отсутствие в ней каких-либо изолированных частей, т. е. не охваченных взаимодействиями с другими частями системы.

На этом основании свойство зависимости распространяется на все без исключения элементы системы, ввиду чего ее толкование подразумевает взаимодействие всех элементов и нераздельность системы.

Примером такого определения служит трактовка системы Р. Акоффом и Ф. Эмери, под которой они понимают “множество взаимосвязанных элементов, каждый из которых связан прямо или косвенно с каждым другим элементом, а два любые подмножества этого множества не могут быть независимыми”.

Вместе с тем некоторые аналитики усматривают в подобной интерпретации системы неполноту, считая необходимым указать на ее исследователя (наблюдателя). Дело в том, что границы и содержание системы во многом обусловливаются подходом и возможностями лица (коллектива), осуществляющего ее изучение или конструирование. Поэтому одна и та же система, исследуемая под различным углом зрения, может быть и по-разному изучена и описана.

На это обстоятельство обращает внимание, в частности, английский нейрофизиолог. По его мнению, если система в ходе исследования становится все больше и больше, информация о ней резко возрастает и восприятие ее становится невозможным. Тогда целью “должно быть получение частичного знания, которое, будучи частичным по отношению к целому, было бы тем не менее полным в себе и достаточным для решения данной практической задачи”.

Наконец, существенно отличаются от прочих системы, обладающие поведением, - так называемые бихевиористические (от англ. вehaviour - поведение) системы. Поскольку предметом нашего рассмотрения служат социально-экономические системы, следует дополнить ее определение целью создания системы. Целевая установка играет для таких систем решающую роль, задавая для нее внутреннее строение и характер функционирования.

Таким образом, обобщая свойства социально-экономической системы, можно сформулировать следующее определение ее.

Социально-экономическая система представляет собой множество связанных между собой элементов, характеризуемых в рамках исследовательской задачи целостностью и целенаправленным поведением.

Настоящее толкование системы вытекает из основных признаков ее и дает лишь предварительные сведения о системе. В дальнейшем по мере углубления знаний о ней приведенное определение системы будет расширяться и конкретизироваться.

Упорядочивая существующие в литературе подходы к определению системы, аналитики склонны разделить их на 3 группы.

Первая группа охватывает объективно существующие комплексы процессов и явлений, связанные между собой (скажем, туристические фирмы, гостиницы, учреждения здравоохранения, банки и т. п.).

Вторая группа включает искусственно разрабатываемые системы, например, модели функционирования тех или иных предприятий. Эти системы служат отображением реально протекающих явлений и процессов и служат инструментом их исследования.

Третья группа включает комбинированные системы, имеющие черты первой и второй групп. Таковыми являются проектируемые и создаваемые предприятия и их подразделения, при реализации которых используются методы и средства моделирования.

Разумеется, вряд ли можно дать исчерпывающее определение системы. И не только потому, что системы многообразны, имеют бесконечное множество свойств и подвести их под “общий знаменатель” довольно трудно. Ведь с течением времени наши знания о системе прирастают, ввиду чего переосмысливается и уточняется само определение системы. Подобно тому, как системы живут и развиваются, совершенствуется и понятие о ней.

2.2. Понятия, характеризующие содержание системы. Исследование и проектирование систем предполагает применение определенного языка ее описания. Он должен быть достаточно информативным, емким по содержанию для охвата проблематики систем и при этом не допускать двусмысленности. В противном случае могут возникнуть трудности как с полнотой изложения материала, так и с пониманием его существа.

Вследствие этого уместно остановиться на основных понятиях, характеризующих строение и деятельность социально-экономических систем. Раскроем содержание тех из них, которые составляют терминологический минимум теории систем и потребуются нам в дальнейшем. Прежде всего обратимся к категориям, раскрывающим понятие системы.

Элемент системы – это ее наименьшее звено в рамках проводимого исследования. Другими словами, ее первичные ячейки, которые в том или ином конкретном анализе системы не подлежат дроблению и формируют представление о ее устойстве и поведении. В зависимости от цели и специфики задачи в качестве элемента могут быть приняты различные части системы: рабочее место, бюро, отдел, участок, цех, филиал, предприятие, объединение и др.

Среда – это совокупность принимаемых во внимание элементов, их свойства и характеристики. В этой совокупности принято выделять некоторое множество элементов, которое образует изучаемую систему, и остальные элементы, окружающие ее. Говорят, что первые составляют внутреннюю, вторые – внешнюю среду системы. Такое подразделение среды на внутреннюю и внешнюю носит условный характер, и граница между ними обусловливается критерием выделения системы. Этот критерий обычно задается внешней средой, диктуется соображениями исследования и потому часто в ходе его переосмысливается и уточняется.

Свойства среды находят выражение в многообразии, взаимозависимости, изменчивости и определенности значений ее факторов.

Очевидно, чем больше многообразие и изменчивость факторов среды, тем она сложнее для анализа. При этом скорость изменения значений факторов характеризует степень подвижности среды, ее динамичность. А определенность значений факторов, т. е. полнота и точность сведений о них, придает среде ту или иную “прозрачность” и влияет на процесс ее воспроизведения формальными средствами.

Связь – это ограничение, налагаемое на элементы системы. Образуя связь, элементы утрачивают часть своей свободы, но вместе с тем приобретают возможность вступать в контакт друг с другом.

Связи существуют как внутри некоторой системы, так и с внешней средой. Посредством внешних связей система “общается” со своим окружением, с помощью внутренних связей элементы системы взаимодействуют между собой и поддерживают ее целостность. Различают жесткие, неизменные во времени связи, и гибкие, которые могут изменяться в процессе работы системы . Необходимо иметь в виду, что с позиций управления связь представляет собой обмен информацией между элементами системы, благодаря чему обеспечивается ее целенаправленное поведение. При этом также можно встретить непосредственные и опосредованные, сильные и слабые, направленные и ненаправленные, прямые и обратные связи.

Целостность системы – это ее органическое единство, выражаемое обособленностью элементов данной системы от других элементов внешней среды и способностью к самосохранению системы. Ее целостность обеспечивается прежде всего тем, что внутренние связи системы сильнее, нежели внешние, и потому удается противостоять негативным воздействиям окружающей среды и избежать распада системы. С другой стороны, ее целостность поддерживается появлением у системы новых интегративных свойств, что побуждает ее элементы вступать в контакт друг с другом и следовать коллективному поведению.

В методологическом аспекте здесь необходимо отметить следующее. Поскольку целостность имеет примат над остальными свойствами системы, именно система как целое доминирует во взаимодействии с элементами, а не наоборот. Элементы составляют систему, но при этом она подчиняет себе свои элементы и при расщеплении порождает их. Ведь разбиение системы на элементы может быть выполнено различным образом, но целостность ее от этого не меняется.

Цель системы – это ее намерение относительно результата своей деятельности на протяжении некоторого периода времени . “Стремление сопродуцировать достижение общих целей – это то, что продуцирует взаимодействия, объединяющие индивидов в социальную группу” (Акофф Р., Эмери Ф.). Тем самым цель выступает движущим мотивом образования системы, предпосылкой ее функционирования и целостности.

Обсуждаемые понятия являются исходными для определения системы. В последующем эта терминология будет уточняться и расширяться по мере изучения атрибутов и закономерностей поведения системы.

2.3. Атрибуты системы. Коренной атрибут системы – ее целостность – обеспечивается зарождением у системы новых качеств, отсутствующих у ее элементов в отдельности. Именно такие интегративные свойства придают системе уникальность и обусловливают специфику ее деятельности.

В зарубежной системологии этот феномен получил название эмерджентности (от латинского emergere), что в переводе означает “появляться, возникать”. При этом констатируется принципиальная несводимость свойств системы к сумме свойств составляющих ее элементов и невыводимость из последних свойств системы . Этим подчеркивается качественная новизна эмерджентных свойств системы: они не могут быть получены простым сложением свойств ее элементов, хотя свойства элементов, конечно, накладывают отпечаток на свойства системы.

Воздействия системы и ее элементов отличаются взаимовлиянием их друг на друга: система оказывает влияние на элементы, элементы – на систему. В результате элементы утрачивают некоторые свойства, которые они имели в свободном (до вхождения в систему) положении, но взамен приобретают иные свойства, вытекающие из их места и функций в системе. Аналогично и система претерпевает изменения в случае включения в нее новых или исключения прежних элементов. Кстати, в процессе взаимодействия элементов системы у нее могут появляться не только новые свойства, но и части, которые отсутствовали у системы раньше. Тем самым у системности просматривается структурный и функциональный аспекты.

Внешняя среда и система. Выше уже отмечалось, что разделение среды на внешнюю и внутреннюю в известной мере условно и привносится исследователем. Такое отграничение одних элементов от других дает возможность очертить в среде систему, но вместе с тем подчеркивает неотрывность системы от своего внешнего окружения. Поэтому функционирование системы протекает во внешней среде и требует учета их взаимодействия.

Закрытая (замкнутая) система – это система, которая не имеет каналов обмена с внешней средой. Иными словами, ни один элемент системы не связан ни с одним элементом внешней среды. При рассмотрении подобной идеализированной системы пренебрегают влиянием внешнего окружения, полагая, что система является автономной и остается “непроницаемой” для его воздействия. Поэтому изменение состояний закрытой системы может быть вызвано лишь какими-то ее внутренними причинами.

Открытая система это система, имеющая каналы обмена с внешней средой и испытывающая ее влияние. У таких систем хотя бы один ее элемент связан с элементом внешнего окружения. В общем случае взаимодействие со средой может иметь многообразный характер: материально-энергетический, кадровый, финансовый, информационный и иной. Тем самым открытые системы восприимчивы к воздействиям среды, способны реагировать на них и изменять режим своего функционирования.

В реальности системы не могут отгородиться от своего окружения и потому являются открытыми. Между тем иногда аналитики пренебрегают несущественными в рамках той или иной задачи воздействиями среды (например, гравитационными, магнитными и т. п.) и представляют такую систему закрытой, допуская при этом известную погрешность.

2.4. Понятия, характеризующие структуру и функционирование системы. Достижение цели предполагает подчинение ей внутреннего устойства системы и деятельности всех входящих в нее элементов . В условиях нарастающей сложности внешней и внутренней среды целенаправленное движение системы находит выражение во множественности и масштабности выполняемых элементами функций. Вследствие этого возникает необходимость в рациональном осуществлении взаимодействия элементов системы, для чего формируется ее структура.

Структура системы – это совокупность ее базисных элементов, связей и отношений между ними, а также способов взаимодействия элементов. Она представляет собой “скелет” системы, ее инвариант, т. е. такое качество системы, которое остается относительно стабильным при изменении режима ее работы. Структура как сеть существенных связей между элементами выполняет системообразующую и системосохраняющую роли в системе, благодаря чему обеспечивается ее целостность.

Между тем относительное постоянство структуры вовсе не означает, что она пребывает неизменной в процессе функционирования системы. Наоборот, подвижность системы была бы невозможной, если бы ее структура окостенела и не подвергалась изменению. Но при этом существует предел динамичности структуры, за которым наступает переход системы в новое качество или ее распад.

Приведенное выше определение структуры системы по своему содержанию близко к понятию системы, что может внести путаницу в их толкование. Чем же они отличаются друг от друга? Структуру формируют только устойчивые элементы и связи, тогда как систему – вся совокупность (и устойчивых, и неустойчивых) имеющихся в ней элементов и связей. Вот почему структурные связи предохраняют систему от разрушения, несмотря на помехи, возникающие внутри и вне системы.

Система функционирует во времени и в пространстве. Поэтому в зависимости от того, в каком измерении рассматриваются взаимодействия в системе, она может быть представлена в виде сетевой или иерархической структуры.

Сетевая структура (или просто сеть) служит средством декомпозиции системы во времени. Такая структура отражает развертывание процесса функционирования системы по мере следования событий друг за другом и связь между ними. Задача исследования в этом случае сводится к анализу цепочек событий и расчетам продолжительности критического пути (наиболее продолжительной цепи событий) и резервов совершения событий.

Иерархическая структура (иерархия) является средством декомпозиции системы в пространстве. Она фиксирует взаимодействие элементов, распределенных по уровням в соответствии с присущей им подчиненностью. Подобное вертикальное строение системы примечательно тем, что позволяет сочетать директивность с предоставлением определенной свободы маневрирования нижестоящим элементам. Отсюда основная проблема состоит в поиске рационального соотношения централизации-децентрализации элементов системы с тем, чтобы в полной мере реализовать ее возможности для достижения цели.

Очевидно, чем больше элементов в системе и многочисленнее связи в ней, тем разветвленнее ее структура и сложнее система. Поэтому необходимо уточнить, что будем понимать здесь под категорией сложности.

Сложность системы - это разнообразие ее элементов и связей между ними. На этом основании о сложности системы будем судить не только по тому, много или мало в ней элементов и связей, но и какова их неоднородность. Это значит, требуется учет степени сходства и различия элементов и связей, их способности к преобразованиям - изменению, отмиранию и порождению и т. п. Отсюда максимальная сложность приходится на живые организмы и социальные системы. Понятно, чем сложнее система, тем менее предсказумо поведение ее и труднее проводить исследование.

Существуют различные подходы к классификации систем по уровню сложности, среди которых наибольшую известность получили следующие.

Один из них берет в качестве классификационного признака число элементов системы. Например, советский математик делит все системы на малые (10-1000 элементов), сложные (00 элементов) и так далее – ультрасложные и суперсистемы. В качестве примера системы 2-ой группы он приводит транспортную систему большого города, 3-ей группы – организмы животных и человека, социальные организации, а 4-ой группы – звездную вселенную.

Другой подход к классификации исходит из возможности описания системы. Так, английский кибернетик С. Бир предлагает разделить все системы на простые, сложные и очень сложные. Если описание первых систем не встречает затруднений, вторые еще поддаются подробному описанию, то третьи (экономика, мозг, фирма) - уже нет. При этом автор классификации вводит и второй критерий – характер протекающих в них процессов (детерминированный или вероятностный).

Из определения сложности систем и их классификации видно, что разнообразие элементов и связей порождает множество возможных состояний системы, которые образуют процесс ее функционирования.

Состояние системы это ее положение в некоторый момент времени. Описание этого положения дают зафиксированные в данный момент значения характеристик системы. Среди них могут быть наблюдаемые внешние воздействия на систему и ее ответная реакция.

Число состояний реальных систем чрезвычайно велико. Для примера допустим, что элемент описывается 3 характеристиками, каждая из которых может принимать всего 2 значения. Тогда число состояний такого элемента равно 2×2×2 = 8. Если система образована из 10 таких элементов, то общее число состояний системы будет равно 8 в степени 10, т. е. больше 1 миллиарда.

Параметры системы это ее характеристики, выбранные для целей исследования данной системы. Параметры сообщают о тех свойствах системы, которые переводят ее из одного состояния в другое. Процедура выбора параметров лишена строгой регламентации и формализации, ввиду чего она зависит от подхода и опыта исследователя. Однако субъективизм процедуры может быть снижен благодаря последующему анализу и отсеиванию несущественных и малоинформативных параметров.

В зависимости от способности находиться в различных состояниях системы могут быть статическими или динамическими.

Статическая система это система, которая не изменяется во времени. Поскольку в этой системе не происходит смены состояний, принимается, что она пребывает только в одном состоянии. Такая система, несмотря на влияние внешней среды, не откликается на ее воздействия и представляет мало интереса для исследования.

Динамическая система это система, которая с течением времени может менять свои состояния. В результате происходящие в ней процессы отличаются разнообразием внутренних состояний и потому более богатыми свойствами. В дальнейшем предметом нашего изучения будут лишь открытые динамические системы.

Поведение системы это последовательность ее состояний в определенном пространстве и времени. Ввиду этого поведением обладают только те системы, которые могут переходить из одного состояния в другое . Заметим, что некоторые специалисты склонны считать, что поведение присуще только организационным и человеко-машинным системам, т. е. наделенных целеполаганием, тогда как в отношении других систем уместнее говорить лишь о протекающих в них процессах.. В этом случае можно утверждать, что поведение систем складывается под влиянием взаимозависимых действий элементов системы, направленных на достижение желаемого результата..

Ситуация это совокупность состояний системы и внешней среды в фиксированный момент времени. Ситуация характеризует сложившееся положение системы и ее окружения посредством значений их параметров .

В различных ситуациях обращают на себя внимание такие действия внешней и внутренней среды, которые вносят помехи в ход функционирования системы.

Возмущение (помеха) это такое действие, которое влияет на состояния системы и дестабилизирует ее поведение. Оно вносит разлад во взаимодействие элементов и снижает полезный результат функционирования системы. Возмущения могут исходить как от внутренней среды, так и внешней . Другими словами, они могут возникать в самой системе под влиянием собственных процессов и в ее окружении.

Возмущения накладывают отпечаток на функционирование системы и вызывают ее изменение значений ее параметров, а иногда и структуры системы. Поэтому управление системой призвано обеспечить ее движение по расчетной траектории, задаваемой параметрами системы.

ТЕМА 2

ПРОЦЕСС ФУНКЦИОНИРОВАНИЯ СИСТЕМЫ

Программная аннотация

Функциональные свойства системы. Равновесие системы. Статическое и динамическое равновесие. Устойчивость системы. Область устойчивости. Устойчивое равновесие.

Гомеостазис. Адаптация. Развитие. Эволюционное и революционное развитие.

Организация и организованность системы. Отношения порядка между ее элементами, связями и взаимодействиями.

Классификация систем по степени организованности. Хорошо и плохо организованные системы. Самоорганизующиеся системы.

Опорный конспект лекции

3.1. Функциональные свойства и характеристики системы. Воздействие среды на открытую систему приводит к изменению условий ее функционирования и встречает ответную реакцию системы.

Равновесие системы это ее способность сохранять свое поведение при отсутствии возмущений среды. Такая ситуация в социальных системах примечательна тем, что ни один из взаимодействующих элементов не стремится нарушить его. Поэтому состояние равновесия часто ассоциируется с достижением системой желаемого положения.

Между тем даже в благоприятном для системы состоянии она в процессе своего функционирования не теряет подвижности и смещается относительно точки равновесия в ту или иную сторону. Совершая вокруг нее колебания, система находится в состоянии уже не статического, а динамического равновесия.

Устойчивость это способность системы поддерживать свое поведение, несмотря на возмущения среды. Строго говоря, понятие устойчивости относится не к системе как таковой, а к ее параметрам. Дело в том, что одни параметры системы могут обладать свойством устойчивости, другие - нет. В этом случае оценивать устойчивость системы в целом затруднительно .

К тому же с практической точки зрения существенными являются вопросы, о сохранении каких свойств системы идет речь и каков класс допустимых возмущений. После ответа на эти вопросы усилия исследователей могут быть направлены на определение значений параметров, при которых система остается устойчивой (“области устойчивости”). Ведь относительно иных свойств или ограничений на возмущения параметры системы могут оказаться неустойчивыми.

Устойчивое равновесие это способность системы возвращаться в состояние равновесия, после того, как она была из него выведена. Поскольку система не всегда принимает прежнее состояние равновесия, среди них могут встречаться и состояния неустойчивого равновесия. В общем случае у системы может быть не одно, а множество различных состояний равновесия.

Свойство устойчивого равновесия проявляет себя в другом свойстве, присущем живым организмам, - гомеостазисе . В биологии под гомеостазисом понимают способность организма удерживать свои параметры в физиологически допустимых границах. Между тем гомеостатическое поведение могут иметь и технические системы, снабженные механизмами саморегуляции.

Адаптация это способность системы приспосабливаться к возмущениям. В результате этого система имеет возможность ослабить негативное воздействие внешних и внутренних возмущентй и сохранить себя как целостную систему. В зависимости от характера возмущений процесс адаптации системы может включать изменение режима ее функционирования, либо коренную перестройку структуры системы.

Развитие системы – это процесс количественных и качественных изменений в ней, не нарушающих целостность системы. В ходе развития системы в ней происходит изменение сложности и модификация структуры, т. е. преобразования в составе элементов и совокупности связей между ними. При этом выделяют две формы развития – постепенного (эволюционного) и скачкообразного (революционного) изменения свойств системы. К тому же и направление этих изменений может быть различным – восходящим (прогрессивным), либо нисходящим (регрессивным). В последнем случае система утрачивает свои прежние качества и деградирует вплоть до распада.

При прогрессивном развитии усложняется структура системы, например, фирма расширяет свою технологическую базу, что позволяет ей диверсифицировать производство и адаптироваться к колебаниям спроса на ее товары и услуги. В противоположность ему регрессивное развитие протекает при старении оборудования, истощении оборотных средств и свертывании производственно-финансовой деятельности фирмы.

3.2. Организация и организованность системы. Структурные преобразования в системе могут иметь своим следствием повышение взаимосвязанности ее элементов и согласованности функционирования частей системы, или, наоборот, разрыв связей между ее элементами и тем самым нарастание разлада в системе. Поэтому понятие развития системы можно рассмотреть с точки зрения ее организации.

Организация системы - это ее строение, характеризуемое отношениями порядка среди элементов, связей и взаимодействий между ними. В такой интерпретации понятие организации системы содержит в себе ее структуру и определяется через нее. Вместе с тем в толкование организации системы дополнительно вводятся отношения порядка между ее элементами, связями и взаимодействиями.

Под отношением порядка между элементами будем понимать правило их расположения в пространственно-временном измерении. Здесь учитывается позиция элементов относительно друг друга, их предшествование и т. п. Иначе говоря, если есть какое-то закономерное появление элементов в системе, то его и будем полагать отношением порядка между ними.

Аналогично принимается во внимание также отношение порядка между связями и взаимодействиями среди элементов, т. е. их закономерное осуществление в системе.

Отмечаемые отношения в системе могут отличаться друг от друга и быть достаточно разнообразными. В силу этого согласованное функционирование элементов системы диктует необходимость уменьшения этого разнообразия и повышения слаженности их взаимодействия, поскольку в противном случае в системе станет нарастать хаос.

Организованность системы это степень упорядоченности ее функционирования, достигаемая благодаря взаимодействию элементов системы. Отсюда чем больше и теснее связаны элементы системы друг с другом, тем лучше ее организованность. Для социально-экономической системы это условие выражается в необходимости координации поведения всех ее элементов, что повышает согласованность поведения частей системы и ее организованность.

По степени организованности системы можно классифицировать на хорошо организованные, плохо организованные и самоорганизующиеся.

В хорошо организованной системе элементы и связи просматриваются отчетливо и однозначно, и потому процесс ее функционирования имеет детерминированный характер. Таковыми системами являются, например, малоэлементные механические устройства – велосипед , часы и др.

В плохо организованной системе взаимодействия элементов становятся менее очевидными, трудноопределяемыми и тем самым протекающие в ней процессы будут иметь уже случайную природу. Детерминизм функционирования системы уступает место стохастическим закономерностям. Наглядную иллюстрацию их можно найти в статистических процессах взаимодействия молекул в газе, отчего настоящие системы называют также диффузными. Примером подобных процессов могут служить те из них, которые реализуют удовлетворение заявок клиентов, - в телефонной сети, на автозаправочных станциях и др.

Наконец, самоорганизующиеся системы отличаются еще большей непредсказуемостью, способностью к неожиданному и нетривиальному поведению и адаптацией к внешней среде. К ним относятся социально-экономические системы, и в частности, учреждения общественного питания, туризма и др.

ТЕМА 3

ЗАКОНОМЕРНОСТИ ОБРАЗОВАНИЯ И ПОВЕДЕНИЯ СОЦИАЛЬНО-ЭКОНОМИЧЕСКОЙ СИСТЕМЫ

Программная аннотация

Закономерности образования системы: целенаправленности, дифференцированности и противоречивости элементов, совместимости элементов, интегративности и коммуникативности элементов.

Закономерности поведения системы: сохранения целостности системы, повышения сложности и организованности системы, потенциальной эффективности, иерархичности, адаптации, самоорганизации.

Опорный конспект лекции

4.1. Закономерности образования системы. Становление системы происходит при некоторых условиях, которые служат предпосылками ее возникновения и сохранения. Среди этих условий можно обнаружить следующие закономерности.

1. Целенаправленности . Создание системы преследует определенную цель, которая формируется внутри системы. Цель играет основополагающую роль в формировании структуры, функций, организации и поведении системы.

Примечательным в этом отношении служит мнение Генри Форда: “Во-первых, корпорация должна иметь своей целью оказание определенных услуг… Самое важное – это преследуемая цель. Для того, чтобы правильно производить то или другое, необходимо руководствоваться определенной целью…”. На приоритет цели обращал внимание и другой классик теории менеджмента - Г. Эмерсон, который отвел постановке цели первое место среди сформулированных им 12 принципов производительности.

2. Дифференцированности и противоречивости элементов . В процессе образования системы элементы ее предстают как разнородные, отличающиеся друг от друга, что вносит противоречивость в отношение между ними и с системой. Эта противоречивость вытекает уже из нетождественности целого и его части. Целое зиждется прежде всего на том, что есть общее у элементов, объединяет их в систему. Однако у элементов есть и особенное, специфичное от черт других элементов. Но именно благодаря дифференцированности и различной специализации элементы могут взаимодополнять друг друга и содействовать в выполнении общих функций.

3. Совместимости элементов . Функционирование системы как единого целого предполагает не только дифференцированность ее элементов, но и совместимость их. Совместное поведение элементов подразумевает наличие у них способности к взаимодействию. В противном случае согласованное поведение элементов будет нарушено отсутствием у некоторых (или всех) из них связей, обеспечивающих координацию элементов.

4. Интегративности элементов . Для осуществления общесистемных функций элементы вступают в связь и объединяются, представляя собой целостность. Подобная интеграция элементов становится возможной, если сила связей между ними превысит силу их взаимодействия с окружающей средой. Иначе произойдет разрыв внутренних связей, и элементы могут оказаться вне системы, поставив под угрозу ее целостность.

5. Коммуникативности элементов . Интегративность систем не исключает, а наоборот, предполагает взаимодействие элементов открытых систем не только в рамках системы, но и за ее пределами, т. е. с элементами внешней среды. По каналам связи система может вести обмен с внешней средой ресурсами (материально-энергетическими, трудовыми, финансовыми, информационными и др.), вследствие чего окружение системы задает ей условия функционирования.

4.2. Закономерности поведения системы. Функционирование системы подчинено определенным свойствам, имеющим существенный и повторяемый характер. Они представляют собой закономерности поведения системы и проявляют себя в виде тенденций ее развития. Среди них методологическое значение имеют следующие.

1. Сохранения целостности системы . В процессе функционирования система стремится обеспечить свою целостность благодаря модернизации элементов и структуры системы, поскольку в ином случае ее ожидает разрушение внутренних связей и целостности.

2. Повышения сложности и организованности системы . Поддержание целостности системы в условиях нарастания возмущений внутри и вне ее побуждает систему реагировать на них усложнением, реорганизацией, порождением новых элементов и связей, что позволяет системе противостоять помехам и сохранять в подвижной среде свою устойчивость.

3. Потенциальной эффективности . Настоящая закономерность устанавливает зависимость предельных свойств системы от сложности ее структуры и поведения. В соответствии с этим потенциальные возможности системы имеют свой предел и в случае их исчерпания требуется усложнение системы.

4. Иерархичности . В ходе повышения сложности системы происходит реструктуризация системы, перестроение связей элементов по вертикали и горизонтали, переподчинение их, что влечет за собой изменение степени централизации системы. При этом каждый уровень иерархии проявляет разные свойства по отношению к вышестоящему и нижестоящему уровню. Во взаимодействии с вышестоящим уровнем больше проявляется свойство подчинения, во взаимодействии с нижестоящим уровнем – свойство системного единства.

5. Адаптации .. С позиций иерархичности внешняя среда оказывает доминирующее влияние на систему. Стремление системы сохранить при этом устойчивость параметров находит свое выражение в закономерности адаптации. Процесс адаптации может протекать пассивно, когда система лишь подстраивается под внешние условия, и активно, когда система реагирует на них, отвечая обратным воздействием на свое окружение.

6. Самоорганизации . Среди адаптивных систем обычно различают самонастраивающиеся и самоорганизующиеся системы. Если первые в процессе приспособления к возмущениям изменяют лишь способ своего функционирования, то вторые модернизируют свою структуру.

Например, самонастраивающиеся системы в соответствии с колебаниями спроса на свои услуги могут наращивать объем выгодных услуг и свертывать производство убыточных услуг. В отличие от них самоорганизующиеся системы проводят более глубокие преобразования в своей производственной структуре - создают новые подразделения и осваивают технологию производства выгодных им услуг.

Самоорганизация предполагает накопление информации о ситуациях в прошлом и с учетом ее выработку линии дальнейшего поведения системы. Тем самым она набирается опыта и занимается самообучением, благодаря которому система имеет возможность осознанно корректировать режим своего функционирования и добиваться достижения цели.

Необходимо заметить, что закономерность самоорганизации в настоящее время остается во многом загадочной для исследователей и слабоизученной.

Лекция 2: Системные свойства. Классификация систем

Свойства систем.

Итак, состоянием системы называется совокупность существенных свойств, которыми система обладает в каждый момент времени.

Под свойством понимают сторону объекта, обуславливающую его отличие от других объектов или сходство с ними и проявляющуюся при взаимодействии с другими объектами.

Характеристика — то, что отражает некоторое свойство системы.

Какие свойства систем известны.

Из определения «системы» следует, что главным свойством системы является целостность, единство, достигаемое посредством определенных взаимосвязей и взаимодействий элементов системы и проявляющиеся в возникновении новых свойств, которыми элементы системы не обладают. Это свойство эмерджентности (от анг. emerge — возникать, появляться).

  1. Эмерджентность — степень несводимости свойств системы к свойствам элементов, из которых она состоит.
  2. Эмерджентность — свойство систем, обусловливающее появление новых свойств и качеств, не присущих элементам, входящих в состав системы.

Эмерджентность — принцип противоположный редукционизму, который утверждает, что целое можно изучать, расчленив его на части и затем, определяя их свойства, определить свойства целого.

Свойству эмерджентности близко свойство целостности системы. Однако их нельзя отождествлять.

Целостность системы означает, что каждый элемент системы вносит вклад в реализацию целевой функции системы.

Целостность и эмерджентность — интегративные свойства системы.

Наличие интегративных свойств является одной из важнейших черт системы. Целостность проявляется в том, что система обладает собственной закономерностью функциональности, собственной целью.

Организованность — сложное свойство систем, заключающиеся в наличие структуры и функционирования (поведения). Непременной принадлежностью систем является их компоненты, именно те структурные образования, из которых состоит целое и без чего оно не возможно.

Функциональность — это проявление определенных свойств (функций) при взаимодействии с внешней средой. Здесь же определяется цель (назначение системы) как желаемый конечный результат.

Структурность — это упорядоченность системы, определенный набор и расположение элементов со связями между ними. Между функцией и структурой системы существует взаимосвязь, как между философскими категориями содержанием и формой. Изменение содержания (функций) влечет за собой изменение формы (структуры), но и наоборот.

Важным свойством системы является наличие поведения — действия, изменений, функционирования и т.д.

Считается, что это поведение системы связано со средой (окружающей), т.е. с другими системами с которыми она входит в контакт или вступает в определенные взаимоотношения.

Процесс целенаправленного изменения во времени состояния системы называется поведением . В отличие от управления, когда изменение состояния системы достигается за счет внешних воздействий, поведение реализуется исключительно самой системой, исходя из собственных целей.

Поведение каждой системы объясняется структурой систем низшего порядка, из которых состоит данная система, и наличием признаков равновесия (гомеостаза). В соответствии с признаком равновесия система имеет определенное состояние (состояния), которое являются для нее предпочтительным. Поэтому поведение систем описывается в терминах восстановления этих состояний, когда они нарушаются в результате изменения окружающей среды.

Еще одним свойством является свойство роста (развития). Развитие можно рассматривать как составляющую часть поведения (при этом важнейшим).

Одним из первичных, а, следовательно, основополагающих атрибутов системного подхода является недопустимость рассмотрения объекта вне его развития , под которым понимается необратимое, направленное, закономерное изменение материи и сознания. В результате возникает новое качество или состояние объекта. Отождествление (может быть и не совсем строгое) терминов «развитие» и «движение» позволяет выразиться в таком смысле, что вне развития немыслимо существование материи, в данном случае — системы. Наивно представлять себе развитие, происходящее стихийно. В неоглядном множестве процессов, кажущихся на первый взгляд чем-то вроде броуновского (случайного, хаотичного) движения, при пристальном внимании и изучении вначале как бы проявляются контуры тенденций, а затем и довольно устойчивые закономерности. Эти закономерности по природе своей действуют объективно, т.е. не зависят от того, желаем ли мы их проявления или нет. Незнание законов и закономерностей развития — это блуждание в потемках.

Кто не знает, в какую гавань он плывет, для того нет попутного ветра

Поведение системы определяется характером реакции на внешние воздействия.

Фундаментальным свойством систем является устойчивость , т.е. способность системы противостоять внешним возмущающим воздействиям. От нее зависит продолжительность жизни системы.

Простые системы имеют пассивные формы устойчивости: прочность, сбалансированность, регулируемость, гомеостаз. А для сложных определяющими являются активные формы: надежность, живучесть и адаптируемость.

Если перечисленные формы устойчивости простых систем (кроме прочности) касается их поведения, то определяющая форма устойчивости сложных систем носят в основном структурный характер.

Надежность — свойство сохранения структуры систем, несмотря на гибель отдельных ее элементов с помощью их замены или дублирования, а живучесть — как активное подавление вредных качеств. Таким образом, надежность является более пассивной формой, чем живучесть.

Адаптируемость — свойство изменять поведение или структуру с целью сохранения, улучшения или приобретение новых качеств в условиях изменения внешней среды. Обязательным условием возможности адаптации является наличие обратных связей.

Всякая реальная система существует в среде. Связь между ними бывает настолько тесной, что определять границу между ними становится сложно. Поэтому выделение системы из среды связано с той или иной степенью идеализации.

Можно выделить два аспекта взаимодействия:

  • во многих случаях принимает характер обмена между системой и средой (веществом, энергией, информацией);
  • среда обычно является источником неопределенности для систем.

Воздействие среды может быть пассивным либо активным (антогонистическим, целенаправленно противодействующее системе).

Поэтому в общем случае среду следует рассматривать не только безразличную, но и антогонистическую по отношению к исследуемой системе.

Рис. — Классификация систем

Основание (критерий) классификации Классы систем
По взаимодействию с внешней средой Открытые
Закрытые
Комбинированные
По структуре Простые
Сложные
Большие
По характеру функций Специализированные
Многофункциональные (универсальные)
По характеру развития Стабильные
Развивающиеся
По степени организованности Хорошо организованные
Плохо организованные (диффузные)
По сложности поведения Автоматические
Решающие
Самоорганизующиеся
Предвидящие
Превращающиеся
По характеру связи между элементами Детерминированные
Стохастические
По характеру структуры управления Централизованные
Децентрализованные
По назначению Производящие
Управляющие
Обслуживающие

Классификацией называется разбиение на классы по наиболее существенным признакам. Под классом понимается совокупность объектов, обладающие некоторыми признаками общности. Признак (или совокупность признаков) является основанием (критерием) классификации.

Система может быть охарактеризована одним или несколькими признаками и соответственно ей может быть найдено место в различных классификациях, каждая из которых может быть полезной при выборе методологии исследования. Обычно цель классификации ограничить выбор подходов к отображению систем, выработать язык описания, подходящий для соответствующего класса.

Реальные системы делятся на естественные (природные системы) и искусственные (антропогенные).

Естественные системы: системы неживой (физические, химические) и живой (биологические) природы.

Искусственные системы: создаются человечеством для своих нужд или образуются в результате целенаправленных усилий.

Искусственные делятся на технические (технико-экономические) и социальные (общественные).

Техническая система спроектирована и изготовлена человеком в определенных целях.

К социальным системам относятся различные системы человеческого общества.

Выделение систем, состоящих из одних только технических устройств почти всегда условно, поскольку они не способны вырабатывать свое состояние. Эти системы выступают как части более крупных, включающие людей — организационно-технических систем.

Организационная система, для эффективного функционирование которой существенным фактором является способ организации взаимодействия людей с технической подсистемой, называется человеко-машинной системой.

Примеры человеко-машинных систем: автомобиль — водитель; самолет — летчик; ЭВМ — пользователь и т.д.

Таким образом, под техническими системами понимают единую конструктивную совокупность взаимосвязанных и взаимодействующих объектов, предназначенная для целенаправленных действий с задачей достижения в процессе функционирования заданного результата.

Отличительными признаками технических систем по сравнению с произвольной совокупностью объектов или по сравнению с отдельными элементами является конструктивность (практическая осуществляемость отношений между элементами), ориентированность и взаимосвязанность составных элементов и целенаправленность.

Для того чтобы система была устойчивой к воздействию внешних влияний, она должна иметь устойчивую структуру. Выбор структуры практически определяет технический облик как всей системы, так ее подсистем, и элементов. Вопрос о целесообразности применения той или иной структуры должен решаться исходя из конкретного назначения системы. От структуры зависит также способность системы к перераспределению функций в случае полного или частичного отхода отдельных элементов, а, следовательно, надежность и живучесть системы при заданных характеристиках ее элементов.

Абстрактные системы являются результатом отражения действительности (реальных систем) в мозге человека.

Их настроение — необходимая ступень обеспечения эффективного взаимодействия человека с окружающим миром. Абстрактные (идеальные) системы объективны по источнику происхождения, поскольку их первоисточником является объективно существующая действительность.

Абстрактные системы разделяют на системы непосредственного отображения (отражающие определенные аспекты реальных систем) и системы генерализирующего (обобщающего) отображения. К первым относятся математические и эвристические модели, а ко вторым — концептуальные системы (теории методологического построения) и языки.

На основе понятия внешней среды системы разделяются на: открытые, закрытые (замкнутые, изолированные) и комбинированные. Деление систем на открытые и закрытые связано с их характерными признаками: возможность сохранения свойств при наличии внешних воздействий. Если система нечувствительна к внешним воздействиям ее можно считать закрытой. В противном случае — открытой.

Открытой называется система, которая взаимодействует с окружающей средой. Все реальные системы являются открытыми. Открытая система является частью более общей системы или нескольких систем. Если вычленить из этого образования собственно рассматриваемую систему, то оставшаяся часть — ее среда.

Открытая система связана со средой определенными коммуникациями, то есть сетью внешних связей системы. Выделение внешних связей и описание механизмов взаимодействия «система-среда» является центральной задачей теории открытых систем. Рассмотрение открытых систем позволяет расширить понятие структуры системы. Для открытых систем оно включает не только внутренние связи между элементами, но и внешние связи со средой. При описании структуры внешние коммуникационные каналы стараются разделить на входные (по которым среда воздействует на систему) и выходные (наоборот). Совокупность элементов этих каналов, принадлежащих собственной системе называются входными и выходными полюсами системы. У открытых систем, по крайней мере, один элемент имеет связь с внешней средой, по меньшей мере, один входной полюс и один выходной, которыми она связана с внешней средой.

Для каждой системы связи со всеми подчиненными ей подсистемами и между последним, являются внутренними, а все остальные — внешними. Связи между системами и внешней средой также, как и между элементами системы, носят, как правило, направленный характер.

Важно подчеркнуть, что в любой реальной системе в силу законов диалектики о всеобщей связи явлений число всех взаимосвязей огромно, так что учесть и исследования абсолютно все связи невозможно, поэтому их число искусственно ограничивают. Вместе с тем, учитывать все возможные связи нецелесообразно, так как среди них есть много несущественных, практически не влияющих на функционирование системы и количество полученных решений (с точки зрения решаемых задач). Если изменение характеристик связи, ее исключение (полный разрыв) приводят к значительному ухудшению работы системы, снижению эффективности, то такая связь — существенна. Одна из важнейших задач исследователя — выделить существенные для рассмотрения системы в условиях решаемой задачи связи и отделить их от несущественных. В связи с тем, что входные и выходные полюса системы не всегда удается четко выделить, приходится прибегать к определенной идеализации действий. Наибольшая идеализация имеет место при рассмотрении закрытой системы.

Закрытой называется система, которая не взаимодействует со средой или взаимодействует со средой строго определенным образом. В первом случае предполагается, что система не имеет входных полюсов, а во втором, что входные полюса есть, но воздействие среды носит неизменный характер и полностью (заранее) известно. Очевидно, что при последнем предположении указанные воздействия могут быть отнесены собственно к системе, и ее можно рассматривать, как закрытую. Для закрытой системы, любой ее элемент имеет связи только с элементами самой системы.

Разумеется, закрытые системы представляют собой некоторую абстракцию реальной ситуации, так как, строго говоря, изолированных систем не существует. Однако, очевидно, что упрощение описания системы, заключаются в отказе от внешних связей, может привести к полезным результатам, упростить исследование системы. Все реальные системы тесно или слабо связаны с внешней средой — открытые. Если временный разрыв или изменение характерных внешних связей не вызывает отклонения в функционировании системы сверх установленных заранее пределов, то система связана с внешней средой слабо. В противном случае — тесно.

Комбинированные системы содержат открытые и закрытые подсистемы. Наличие комбинированных систем свидетельствует о сложной комбинации открытой и закрытой подсистем.

В зависимости от структуры и пространственно-временных свойств системы делятся на простые, сложные и большие.

Простые — системы, не имеющие разветвленных структур, состоящие из небольшого количества взаимосвязей и небольшого количества элементов. Такие элементы служат для выполнения простейших функций, в них нельзя выделить иерархические уровни. Отличительной особенностью простых систем является детерминированность (четкая определенность) номенклатуры, числа элементов и связей как внутри системы, так и со средой.

Сложные — характеризуются большим числом элементов и внутренних связей, их неоднородностью и разнокачественностью, структурным разнообразием, выполняют сложную функцию или ряд функций. Компоненты сложных систем могут рассматриваться как подсистемы, каждая из которых может быть детализирована еще более простыми подсистемами и т.д. до тех пор, пока не будет получен элемент.

Определение N1: система называется сложной (с гносеологических позиций), если ее познание требует совместного привлечения многих моделей теорий, а в некоторых случаях многих научных дисциплин, а также учета неопределенности вероятностного и невероятностного характера. Наиболее характерным проявлением этого определения является многомодельность.

Модель — некоторая система, исследование которой служит средством для получения информации о другой системе. Это описание систем (математическое, вербальное и т.д.) отображающее определенную группу ее свойств.

Определение N2: систему называют сложной если в реальной действительности рельефно (существенно) проявляются признаки ее сложности. А именно:

  1. структурная сложность — определяется по числу элементов системы, числу и разнообразию типов связей между ними, количеству иерархических уровней и общему числу подсистем системы. Основными типами считаются следующие виды связей: структурные (в том числе, иерархические), функциональные, каузальные (причинно-следственные), информационные, пространственно-временные;
  2. сложность функционирования (поведения) — определяется характеристиками множества состояний, правилами перехода из состояния в состояние, воздействие системы на среду и среды на систему, степенью неопределенности перечисленных характеристик и правил;
  3. сложность выбора поведения — в многоальтернативных ситуациях, когда выбор поведения определяется целью системы, гибкостью реакций на заранее неизвестные воздействия среды;
  4. сложность развития — определяемая характеристиками эволюционных или скачкообразных процессов.

Естественно, что все признаки рассматриваются во взаимосвязи. Иерархическое построение — характерный признак сложных систем, при этом уровни иерархии могут быть как однородные, так и неоднородные. Для сложных систем присущи такие факторы, как невозможность предсказать их поведение, то есть слабо предсказуемость, их скрытность, разнообразные состояния.

Сложные системы можно подразделить на следующие факторные подсистемы:

  1. решающую, которая принимает глобальные решения во взаимодействии с внешней средой и распределяет локальные задания между всеми другим подсистемами;
  2. информационную, которая обеспечивает сбор, переработку и передачу информации, необходимой для принятия глобальных решений и выполнения локальны задач;
  3. управляющую для реализации глобальных решений;
  4. гомеостазную, поддерживающую динамическое равновесие внутри систем и регулирующую потоки энергии и вещества в подсистемах;
  5. адаптивную, накапливающую опыт в процессе обучения для улучшения структуры и функций системы.

Большой системой называют систему, ненаблюдаемую одновременно с позиции одного наблюдателя во времени или в пространстве, для которой существенен пространственный фактор, число подсистем которой очень велико, а состав разнороден.

Система может быть и большой и сложной. Сложные системы объединяет более обширную группу систем, то есть большие — подкласс сложных систем.

Основополагающими при анализе и синтезе больших и сложных систем являются процедуры декомпозиции и агрегирования.

Декомпозиция — разделение систем на части, с последующим самостоятельным рассмотрением отдельных частей.

Очевидно, что декомпозиция представляют собой понятие, связанное с моделью, так как сама система не может быть расчленена без нарушений свойств. На уровне моделирования, разрозненные связи заменятся соответственно эквивалентами, либо модели систем строится так, что разложение ее на отдельные части при этом оказывается естественным.

Применительно к большим и сложным системам декомпозиция является мощным инструментом исследования.

Агрегирование является понятием, противоположным декомпозиции. В процессе исследования возникает необходимость объединения элементов системы с целью рассмотреть ее с более общих позиций.

Декомпозиция и агрегирование представляют собой две противоположные стороны подхода к рассмотрению больших и сложных систем, применяемые в диалектическом единстве.

Системы, для которых состояние системы однозначно определяется начальными значениями и может быть предсказано для любого последующего момента времени, называются детерминированными.

Стохастические системы — системы, изменения в которых носят случайный характер. При случайных воздействиях данных о состоянии системы недостаточно для предсказания в последующий момент времени.

По степени организованности: хорошо организованные, плохо организованные (диффузные).

Представить анализируемый объект или процесс в виде хорошо организованной системы означает определить элементы системы, их взаимосвязь, правила объединения в более крупные компоненты. Проблемная ситуация может быть описана в виде математического выражения. Решение задачи при представлении ее в виде хорошо организованной системы осуществляется аналитическими методами формализованного представления системы.

Примеры хорошо организованных систем: солнечная система, описывающая наиболее существенные закономерности движения планет вокруг Солнца; отображение атома в виде планетарной системы, состоящей из ядра и электронов; описание работы сложного электронного устройства с помощью системы уравнений, учитывающей особенности условий его работы (наличие шумов, нестабильности источников питания и т. п.).

Описание объекта в виде хорошо организованной системы применяется в тех случаях, когда можно предложить детерминированное описание и экспериментально доказать правомерность его применения, адекватность модели реальному процессу. Попытки применить класс хорошо организованных систем для представления сложных многокомпонентных объектов или многокритериальных задач плохо удаются: они требуют недопустимо больших затрат времени, практически нереализуемы и неадекватны применяемым моделям.

Плохо организованные системы. При представлении объекта в виде плохо организованной или диффузной системы не ставится задача определить все учитываемые компоненты, их свойства и связи между ними и целями системы. Система характеризуется некоторым набором макропараметров и закономерностями, которые находятся на основе исследования не всего объекта или класса явлений, а на основе определенной с помощью некоторых правил выборки компонентов, характеризующих исследуемый объект или процесс. На основе такого выборочного исследования получают характеристики или закономерности (статистические, экономические) и распространяют их на всю систему в целом. При этом делаются соответствующие оговорки. Например, при получении статистических закономерностей их распространяют на поведение всей системы с некоторой доверительной вероятностью.

Подход к отображению объектов в виде диффузных систем широко применяется при: описании систем массового обслуживания, определении численности штатов на предприятиях и учреждениях, исследовании документальных потоков информации в системах управления и т. д.

С точки зрения характера функций различаются специальные, многофункциональные, и универсальные системы.

Для специальных систем характерна единственность назначения и узкая профессиональная специализация обслуживающего персонала (сравнительно несложная).

Многофункциональные системы позволяют реализовать на одной и той же структуре несколько функций. Пример: производственная система, обеспечивающая выпуск различной продукции в пределах определенной номенклатуры.

Для универсальных систем: реализуется множество действий на одной и той же структуре, однако состав функций по виду и количеству менее однороден (менее определен). Например, комбайн.

По характеру развития 2 класса систем: стабильные и развивающиеся.

У стабильной системы структура и функции практически не изменяются в течение всего периода ее существования и, как правило, качество функционирования стабильных систем по мере изнашивания их элементов только ухудшается. Восстановительные мероприятия обычно могут лишь снизить темп ухудшения.

Отличной особенностью развивающихся систем является то, что с течением времени их структура и функции приобретают существенные изменения. Функции системы более постоянны, хотя часто и они видоизменяются. Практически неизменными остается лишь их назначение. Развивающиеся системы имеют более высокую сложность.

В порядке усложнения поведения: автоматические, решающие, самоорганизующиеся, предвидящие, превращающиеся.

Автоматические: однозначно реагируют на ограниченный набор внешних воздействий, внутренняя их организация приспособлена к переходу в равновесное состояние при выводе из него (гомеостаз).

Решающие: имеют постоянные критерии различения их постоянной реакции на широкие классы внешних воздействий. Постоянство внутренней структуры поддерживается заменой вышедших из строя элементов.

Самоорганизующиеся: имеют гибкие критерии различения и гибкие реакции на внешние воздействия, приспосабливающиеся к различным типам воздействия. Устойчивость внутренней структуры высших форм таких систем обеспечивается постоянным самовоспроизводством.

Самоорганизующиеся системы обладают признаками диффузных систем: стохастичностью поведения, нестационарностью отдельных параметров и процессов. К этому добавляются такие признаки, как непредсказуемость поведения; способность адаптироваться к изменяющимся условиям среды, изменять структуру при взаимодействии системы со средой, сохраняя при этом свойства целостности; способность формировать возможные варианты поведения и выбирать из них наилучший и др. Иногда этот класс разбивают на подклассы, выделяя адаптивные или самоприспосабливающиеся системы, самовосстанавливающиеся, самовоспроизводящиеся и другие подклассы, соответствующие различным свойствам развивающихся систем.

Примеры: биологические организации, коллективное поведение людей, организация управления на уровне предприятия, отрасли, государства в целом, т.е. в тех системах, где обязательно имеется человеческий фактор.

Если устойчивость по своей сложности начинает превосходить сложные воздействия внешнего мира — это предвидящие системы: она может предвидеть дальнейший ход взаимодействия.

Превращающиеся — это воображаемые сложные системы на высшем уровне сложности, не связанные постоянством существующих носителей. Они могут менять вещественные носители, сохраняя свою индивидуальность. Науке примеры таких систем пока не известны.

Систему можно разделить на виды по признакам структуры их построения и значимости той роли, которую играют в них отдельные составные части в сравнение с ролями других частей.

В некоторых системах одной из частей может принадлежать доминирующая роль (ее значимость >> (символ отношения «значительного превосходства») значимость других частей). Такой компонент — будет выступать как центральный, определяющий функционирование всей системы. Такие системы называют централизованными.

В других системах все составляющие их компоненты примерно одинаково значимы. Структурно они расположены не вокруг некоторого централизованного компонента, а взаимосвязаны последовательно или параллельно и имеют примерно одинаковые значения для функционирования системы. Это децентрализованные системы.

Системы можно классифицировать по назначению. Среди технических и организационных систем выделяют: производящие, управляющие, обслуживающие.

В производящих системах реализуются процессы получения некоторых продуктов или услуг. Они в свою очередь делятся на вещественно-энергетические, в которых осуществляется преобразование природной среды или сырья в конечный продукт вещественной или энергетической природы, либо транспортирование такого рода продуктов; и информационные — для сбора, передачи и преобразования информации и предоставление информационных услуг.

Назначение управляющих систем — организация и управление вещественно-энергетическими и информационными процессами.

Обслуживающие системы занимаются поддержкой заданных пределов работоспособности производящих и управляющих систем.

Лекция 2: Системные свойства. Классификация систем

Итак, состоянием системы называется совокупность существенных свойств, которыми система обладает в каждый момент времени.

Под свойством понимают сторону объекта, обуславливающую его отличие от других объектов или сходство с ними и проявляющуюся при взаимодействии с другими объектами.

Характеристика - то, что отражает некоторое свойство системы.

Какие свойства систем известны.

Из определения «системы» следует, что главным свойством системы является целостность, единство, достигаемое посредством определенных взаимосвязей и взаимодействий элементов системы и проявляющиеся в возникновении новых свойств, которыми элементы системы не обладают. Это свойство эмерджентности (от анг. emerge - возникать, появляться).

  1. Эмерджентность - степень несводимости свойств системы к свойствам элементов, из которых она состоит.
  2. Эмерджентность - свойство систем, обусловливающее появление новых свойств и качеств, не присущих элементам, входящих в состав системы.

Эмерджентность - принцип противоположный редукционизму, который утверждает, что целое можно изучать, расчленив его на части и затем, определяя их свойства, определить свойства целого.

Свойству эмерджентности близко свойство целостности системы. Однако их нельзя отождествлять.

Целостность системы означает, что каждый элемент системы вносит вклад в реализацию целевой функции системы.

Целостность и эмерджентность - интегративные свойства системы.

Наличие интегративных свойств является одной из важнейших черт системы. Целостность проявляется в том, что система обладает собственной закономерностью функциональности, собственной целью.

Организованность - сложное свойство систем, заключающиеся в наличие структуры и функционирования (поведения). Непременной принадлежностью систем является их компоненты, именно те структурные образования, из которых состоит целое и без чего оно не возможно.

Функциональность - это проявление определенных свойств (функций) при взаимодействии с внешней средой. Здесь же определяется цель (назначение системы) как желаемый конечный результат.

Структурность - это упорядоченность системы, определенный набор и расположение элементов со связями между ними. Между функцией и структурой системы существует взаимосвязь, как между философскими категориями содержанием и формой. Изменение содержания (функций) влечет за собой изменение формы (структуры), но и наоборот.

Важным свойством системы является наличие поведения - действия, изменений, функционирования и т.д.

Считается, что это поведение системы связано со средой (окружающей), т.е. с другими системами с которыми она входит в контакт или вступает в определенные взаимоотношения.

Процесс целенаправленного изменения во времени состояния системы называется поведением . В отличие от управления, когда изменение состояния системы достигается за счет внешних воздействий, поведение реализуется исключительно самой системой, исходя из собственных целей.

Поведение каждой системы объясняется структурой систем низшего порядка, из которых состоит данная система, и наличием признаков равновесия (гомеостаза). В соответствии с признаком равновесия система имеет определенное состояние (состояния), которое являются для нее предпочтительным. Поэтому поведение систем описывается в терминах восстановления этих состояний, когда они нарушаются в результате изменения окружающей среды.

Еще одним свойством является свойство роста (развития). Развитие можно рассматривать как составляющую часть поведения (при этом важнейшим).

Одним из первичных, а, следовательно, основополагающих атрибутов системного подхода является недопустимость рассмотрения объекта вне его развития , под которым понимается необратимое, направленное, закономерное изменение материи и сознания. В результате возникает новое качество или состояние объекта. Отождествление (может быть и не совсем строгое) терминов «развитие» и «движение» позволяет выразиться в таком смысле, что вне развития немыслимо существование материи, в данном случае - системы. Наивно представлять себе развитие, происходящее стихийно. В неоглядном множестве процессов, кажущихся на первый взгляд чем-то вроде броуновского (случайного, хаотичного) движения, при пристальном внимании и изучении вначале как бы проявляются контуры тенденций, а затем и довольно устойчивые закономерности. Эти закономерности по природе своей действуют объективно, т.е. не зависят от того, желаем ли мы их проявления или нет. Незнание законов и закономерностей развития - это блуждание в потемках.

Кто не знает, в какую гавань он плывет, для того нет попутного ветра

Поведение системы определяется характером реакции на внешние воздействия.

Фундаментальным свойством систем является устойчивость , т.е. способность системы противостоять внешним возмущающим воздействиям. От нее зависит продолжительность жизни системы.

Простые системы имеют пассивные формы устойчивости: прочность, сбалансированность, регулируемость, гомеостаз. А для сложных определяющими являются активные формы: надежность, живучесть и адаптируемость.

Если перечисленные формы устойчивости простых систем (кроме прочности) касается их поведения, то определяющая форма устойчивости сложных систем носят в основном структурный характер.

Надежность - свойство сохранения структуры систем, несмотря на гибель отдельных ее элементов с помощью их замены или дублирования, а живучесть - как активное подавление вредных качеств. Таким образом, надежность является более пассивной формой, чем живучесть.

Адаптируемость - свойство изменять поведение или структуру с целью сохранения, улучшения или приобретение новых качеств в условиях изменения внешней среды. Обязательным условием возможности адаптации является наличие обратных связей.

Всякая реальная система существует в среде. Связь между ними бывает настолько тесной, что определять границу между ними становится сложно. Поэтому выделение системы из среды связано с той или иной степенью идеализации.

Можно выделить два аспекта взаимодействия:

  • во многих случаях принимает характер обмена между системой и средой (веществом, энергией, информацией);
  • среда обычно является источником неопределенности для систем.

Воздействие среды может быть пассивным либо активным (антогонистическим, целенаправленно противодействующее системе).

Поэтому в общем случае среду следует рассматривать не только безразличную, но и антогонистическую по отношению к исследуемой системе.

Свойства, определяемые взаимодействием части и целого, включают:

    целостность;

    интегративность;

    коммуникативность;

    иерархичность.

Свойство целостности предполагает, что:

    целое не является простой суммой частей, поскольку систему необходимо рассматривать как единство;

    целостная система – это такая система, в которой внутренние связи частей между собой являются преобладающими по отношению к движению этих частей и к внешнему воздействию на них;

    для того, чтобы что-либо целостное воспринималось как система, оно должно иметь границы, отделяющие его от внешней среды.

Свойство целостности проявляется в возникновении у системы новых интегративных качеств, не свойственных ее компонентам, т.е. в эмерджентности . При этом объединенные в систему элементы могут терять ряд свойств, присущих им вне системы, т.е. система как бы подавляет некоторые свойства своих элементов.

Например, система производства в рабочее время использует только те знания и умения рабочих (элементов системы), которые нужны для осуществления процесса производства и подавляет другие их способности (вокальные, хореографические).

Свойство целостности связано с целью, для реализации которой создается система. При этом объекты (части) функционируют во времени как единое целое – каждый объект, подсистема, ячейка, работают ради единой цели, стоящей перед системой в целом.

Двойственной по отношению к свойству целостности выступает свойство физической аддитивности (или независимости, или суммативности). Свойства физической аддитивности проявляются у системы, как бы распавшейся на независимые элементы. Строго говоря, любая система находится всегда между крайними состояниями абсолютной целостности и абсолютной аддитивности. При этом термином «прогрессирующая факторизация» называется стремление системы к возрастанию степени независимости элементов, а термином «прогрессирующая систематизация» - стремление системы к уменьшению самостоятельности элементов, т.е. к большей целостности.

Свойство интегративности означает наличие системообразующих, системосохраняющих факторов, в числе которых важную роль играют неоднородность и противоречивость элементов, с одной стороны, и стремление их вступить в коалиции, с другой.

Коммуникативность означает, что система не изолирована от других систем, она связана множеством коммуникаций со средой, которая, в свою очередь, является сложным и неоднородным образованием. Данная среда содержит:

    систему более высокого порядка, задающую требования и ограничения объекту;

    нижележащие системы;

    системы одного уровня с рассматриваемым объектом.

Коммуникативность характеризует сложное единство системы со средой.

Иерархичность является необходимым свойством систем и проявляется в существовании нескольких уровней взаимодействия:

    каждый уровень иерархической упорядоченности имеет сложные взаимоотношения в вышележащим и нижележащим уровнями. Если даже между элементами одного уровня иерархии нет явных связей между собой (горизонтальных связей), то они все равно проявляются через вышестоящий уровень. В частности, от вышестоящего уровня зависит, например, какое из подразделений будет поощрено, а какому поручат непрестижную работу. Эта конкретизация свойства иерархичности объясняет неоднородность использования в сложных организационных системах понятий «цель» и «средства», «система» и «подсистема».

    более высокий иерархический уровень оказывает направляющее воздействие на нижележащий уровень, подчиненный ему. Это воздействие проявляется в том, что подчиненные члены иерархии приобретают новые свойства, отсутствующие у них в изолированном состоянии, т.е. свойство эмерджентности проявляется на каждом уровне иерархии;

    для систем с неопределенностью иерархичность означает как бы расчленение «большой» неопределенности на более «мелкие», лучше поддающиеся исследованию и оценке. При этом даже если эти мелкие неопределенности не удается полностью раскрыть и объяснить, то все же иерархическое упорядочение частично снимает общую неопределенность, обеспечивает по крайней мере управляемый контроль над принятием решения.

К другим свойствам систем относятся:

    историчность , основанная на том, что время является непременной характеристикой системы, что выражается в оценке жизненного цикла продукта, технологии, предприятия и т.д.;

    самоорганизация , т.е. способность системы противостоять энтропийным тенденциям, адаптироваться к внешним возмущениям, изменяя при необходимости свою структуру. Информация теряется различными способами, что ведет к увеличению энтропии системы, но чтобы приобрести новую информацию и уменьшить энтропию, следует произвести новые измерения, т.е. затратить энергию. Энтропия и информация служат, таким образом, выражением двух противоположных тенденций в процессах развития. Если система эволюционизирует в направлении упорядоченности, то ее энтропия уменьшается, но это требует целенаправленных усилий, внесения информации, т.е. управления;

    гомеостаз - означает свойство системы поддерживать свои параметры и функции в определенном диапазоне. Оно основано на устойчивости внутренней среды объекта по отношению к воздействию внешней среды. То есть в гомеостате управляемая переменная поддерживается на требуемом уровне механизмом саморегулирования. Здесь орган управления встроен непосредственно в систему, являясь неотъемлемой частью ее. Это идеальное сочетание, свойственное естественным, в первую очередь биологическим, системам, к которому стремятся системы, создаваемые человеком.

    эквифинальность ,характеризующая предельные возможности систем. Сложность структуры системы определяет сложность ее поведения, что в свою очередь означает предельность надежности, помехоустойчивости, управляемости и других качеств системы, т.е. предельность жизнеспособности и потенциальной эффективности сложных систем, в данном случае систем управления и их организационных структур.

В основе теории организаций лежит теория систем.

Система – это 1) целое, созданное из частей и элементов целенаправленной деятельности и обладающее новыми свойствами, отсутствующими у элементов и частей, его образующих; 2) объективная часть мироздания, включающая схожие и совместимые элементы, образующие особое целое, которое взаимодействует с внешней средой. Допустимы и многие другие определения. Общим в них является то, что система есть некоторое правильное сочетание наиболее важных, существенных свойств изучаемого объекта.

Признаками системы являются множество составляющих ее элементов, единство главной цели для всех элементов, наличие связей между ними, целостность и единство элементов, наличие структуры и иерархичности, относительная самостоятельность и наличие управления этими элементами. Термин «организация» в одном из своих лексических значений означает также «систему», но не любую систему, а в определенной мере упорядоченную, организованную.

Система может включать большой перечень элементов и ее целесообразно разделить на ряд подсистем.

Подсистема – набор элементов, представляющих автономную внутри системы область (экономическая, организационная, техническая подсистемы).

Большие системы (БС) – системы, представляемые совокупностью подсистем постоянно уменьшающегося уровня сложности вплоть до элементарных подсистем, выполняющих в рамках данной большой системы базовые элементарные функции.

Система обладает рядом свойств.

Свойства системы – это качества элементов, дающие возможность количественного описания системы, выражения ее в определенных величинах.

Базовые свойства систем сводятся к следующему:

  • – система стремится сохранить свою структуру (это свойство основано на объективном законе организации – законе самосохранения);
  • – система имеет потребность в управлении (существует набор потребностей человека, животного, общества, стада животных и большого социума);
  • – в системе формируется сложная зависимость от свойств входящих в нее элементов и подсистем (система может обладать свойствами, не присущими ее элементам, и может не иметь свойств своих элементов). Например, при коллективной работе у людей может возникнуть идея, которая бы не пришла в голову при индивидуальной работе; коллектив, созданный педагогом Макаренко из беспризорных детей, не воспринял воровства, матерщины, беспорядка, свойственных почти всем его членам.

Помимо перечисленных свойств большие системы обладают свойствами эмерджентности, синергичности и мультипликативности.

Свойство эмерджентности – это 1) одно из первично-фундаментальных свойств больших систем, означающее, что целевые функции отдельных подсистем, как правило, не совпадают с целевой функцией самой БС; 2) появление качественно новых свойств у организованной системы, отсутствующих у ее элементов и не характерных для них.

Свойство синергичности – одно из первично-фундаментальных свойств больших систем, означающее однонаправленность действий в системе, которое приводит к усилению (умножению) конечного результата.

Свойство мультипликативности – одно из первично-фундаментальных свойств больших систем, означающее, что эффекты, как положительные, так и отрицательные, в БС обладают свойством умножения.

Каждая система имеет входное воздействие, систему обработки, конечные результаты и обратную связь

Классификация систем может быть проведена по различным признакам, однако основной является группировка их в трех подсистемах: технической, биологической и социальной.

Техническая подсистема включает станки, оборудование, компьютеры и другие работоспособные изделия, имеющие инструкции для пользователя. Набор решений в технической системе ограничен и последствия решений обычно предопределены. Например, порядок включения и работы с компьютером, порядок управления автомобилем, методика расчета мачтовых опор для ЛЭП, решение задач по математике и др. Такие решения носят формализованный характер и выполняются в строго определенном порядке. Профессионализм специалиста, принимающего решения в технической системе, определяет качество принятого и выполненного решения. Например, хороший программист может эффективно использовать ресурсы компьютера и создавать качественный программный продукт, а неквалифицированный может испортить информационную и техническую базу компьютера.

Биологическая подсистема включает флору и фауну планеты, в том числе относительно замкнутые биологические подсистемы, например муравейник, человеческий организм и др. Эта подсистема обладает большим разнообразием функционирования, чем техническая. Набор решений в биологической системе также ограничен из-за медленного эволюционного развития животного и растительного мира. Тем не менее последствия решений в биологических подсистемах часто оказываются непредсказуемыми. Например, решения врача, связанные с методами и средствами лечения пациентов, решения агронома о применении тех или иных химикатов в качестве удобрений. Решения в таких подсистемах предполагают разработку нескольких альтернативных вариантов и выбор лучшего из них по каким-либо признакам. Профессионализм специалиста определяется его способностью находить лучшее из альтернативных решений, т.е. он должен правильно ответить на вопрос: что будет, если..?

Социальная (общественная) подсистема характеризуется наличием человека в совокупности взаимосвязанных элементов. В качестве характерных примеров социальных подсистем можно привести семью, производственный коллектив, неформальную организацию, водителя, управляющего автомобилем, и даже одного отдельного человека (самого по себе). Эти подсистемы существенно опережают биологические по разнообразию функционирования. Набор решений в социальной подсистеме характеризуется большим динамизмом, как в количестве, так и в средствах и методах реализации. Это объясняется высоким темпом изменения сознания человека, а также нюансов в его реакциях на одинаковые однотипные ситуации.

Перечисленные виды подсистем обладают различным уровнем неопределенности (непредсказуемости) в результатах реализации решений


Соотношение неопределенностей в деятельности различных подсистем

Не случайно в мировой практике легче получить статус профессионала в технической подсистеме, значительно труднее – в биологической и чрезвычайно трудно – в социальной!

Можно привести очень большой список выдающихся конструкторов, изобретателей, рабочих, физиков и других специалистов-техников; значительно меньше – выдающихся врачей, ветеринаров, биологов и т.д.; на пальцах можно перечислить выдающихся руководителей государств, организаций, глав семей и т.д.

Среди выдающихся личностей, работавших с технической подсистемой, достойное место занимают: И. Кеплер (1571–1630) – немецкий астроном; И. Ньютон (1643–1727) – английский математик, механик, астроном и физик; М.В. Ломоносов (1711–1765) – российский естествоиспытатель; П.С. Лаплас (1749–1827) – французский математик, астроном, физик; А. Эйнштейн (1879–1955) – физик-теоретик, один из основателей современной физики; С.П. Королев (1906/07–1966) – советский конструктор и др.

Среди выдающихся ученых, работавших с биологической подсистемой, можно назвать следующих: Гиппократ (ок. 460 – ок. 370 до н. э.) – древнегреческий врач, материалист; К. Линней (1707–1778) – шведский естествоиспытатель; Ч. Дарвин (1809–1882) – английский естествоиспытатель; В.И. Вернадский (1863–1945) – естествоиспытатель, гео- и биохимик и др.

Среди персоналий, работавших в социальной подсистеме, нет общепризнанных лидеров. Хотя по ряду признаков к ним относят российского императора Петра I, американского бизнесмена Г . Форда и других личностей.

Социальная система может включать биологическую и техническую подсистемы, а биологическая – техническую


Социальные, биологические и технические системы могут быть: искусственными и естественными, открытыми и закрытыми, полностью и частично предсказуемыми (детерминированные и стохастические), жесткими и мягкими. В дальнейшем классификация систем будет рассматриваться на примере социальных систем.

Искусственные системы создаются по желанию человека или какого-либо общества для реализации намеченных программ или целей. Например, семья, конструкторское бюро, студенческий профсоюз, предвыборное объединение.

Естественные системы создаются природой или обществом. Например, система мироздания, циклическая система землепользования, стратегия устойчивого развития мировой экономики.

Открытые системы характеризуются широким набором связей с внешней средой, сильной зависимостью от нее. Например, коммерческие фирмы, средства массовой информации, органы местной власти.

Закрытые системы характеризуются главным образом внутренними связями и создаются людьми или компаниями для удовлетворения потребностей и интересов преимущественно своего персонала, компании или учредителей. Например, профсоюзы, политические партии, масонские общества, семья на Востоке.

Детерминированные (предсказуемые) системы функционируют по заранее заданным правилам, с заранее определенным результатом. Например, обучение студентов в институте, производство типовой продукции.

Стохастические (вероятностные) системы характеризуются трудно предсказуемыми входными воздействиями внешней и (или) внутренней среды и выходными результатами. Например, исследовательские подразделения, предпринимательские компании, игра в русское лото.

Мягкие системы характеризуются высокой чувствительностью к внешним воздействиям, а вследствие этого – слабой устойчивостью. Например, система котировок ценных бумаг, новые организации, человек при отсутствии твердых жизненных целей.

Жесткие системы – это обычно авторитарные, основанные на высоком профессионализме небольшой группы руководителей организации. Такие системы обладают большой устойчивостью к внешним воздействиям, слабо реагируют на небольшие воздействия. Например, церковь, авторитарные государственные режимы.

Кроме того, системы могут быть простыми и сложными, активными и пассивными.

Каждая организация должна обладать всеми признаками системы. Выпадение хотя бы одного из них неизбежно приводит организацию к ликвидации. Таким образом, системный характер организации – это необходимое условие ее деятельности.