Пояс эджворта-койпера и облако оорта. Облако Оорта: краткие сведения Солнечная система пояс койпера облако оорта

|

– области Солнечной системы: где находится, описание и характеристика с фото, интересные факты, исследование, открытие, объекты.

Пояс Койпера - крупное скопление ледяных объектов на краю нашей Солнечной системы. - сферическое образование, в котором расположены кометы и другие объекты.

После обнаружения Плутона в 1930 году ученые стали предполагать, что это не самый отдаленный объект в системы. Со временем они отмечали движения других объектов и в 1992 году нашли новый участок. Давайте рассмотрим интересные факты о Поясе Койпера.

Интересные факты о Поясе Койпера

  • Пояс Койпера способен вмещать сотни тысяч ледяных объектов, чей размер варьируется между небольшими осколками до 100 км в ширину;
  • Большая часть короткопериодических комет поступает из пояса Койпера. Их орбитальный период не превышает 200 лет;
  • В главной части пояса Койпера может скрываться более триллиона комет;
  • Крупнейшими объектами выступают Плутон, Квавар, Макемаке, Хаумеа, Иксион и Варуна;
  • Первая миссия к поясу Койпера отправилась в 2015 году. Это зонд Новые Горизонты, исследовавший Плутон и Харон;
  • Исследователи зафиксировали структуры подобные поясу вокруг других звезд (HD 138664 и HD 53143);
  • Льды в поясе сформировались еще в период создания Солнечной системы. С их помощью можно разобраться в условиях ранней туманности;

Определение Пояса Койпера

Начать объяснение нужно с того, где находится Пояс Койпера. Его можно найти за чертой орбиты планеты Нептун. Напоминает Пояс астероидов между Марсом и Юпитером, потому что располагает остатками от формирования Солнечной системы. Но по размерам в 20-200 раз крупнее него. Если бы не влияние Нептуна, то осколки слились и смогли сформировать планеты.

Обнаружение и имя Пояса Койпера

Впервые о присутствии других объектов заявил Фрекрик Леонард, назвавший их ультра-нептуновыми небесными телами за чертой Плутона. Тогда Армин Лейшнер посчитал, что Плутон может выступать всего лишь одним из многих долгопериодических планетных объектов, которые еще предстоит отыскать. Ниже представлены крупнейшие объекты Пояса Койпера.

Крупнейшие объекты пояса Койпера

Название Экваториальный
диаметр
Большая полуось,
а. е.
Перигелий,
а. е.
Афелий,
а. е.
Период обращения
вокруг Солнца (лет)
Открыт
2330 +10 / −10 . 67,84 38,16 97,52 559 2003 i
2390 39,45 29,57 49,32 248 1930 i
1500 +400 / −200 45,48 38,22 52,75 307 2005 i
~1500 43,19 34,83 51,55 284 2005 i
1207 ± 3 39,45 29,57 49,32 248 1978
2007 OR 10 875-1400 67,3 33,6 101,0 553 2007 i
Квавар ~1100 43,61 41,93 45,29 288 2002 i
Орк 946,3 +74,1 / −72,3 39,22 30,39 48,05 246 2004 i
2002 AW 197 940 47,1 41,0 53,3 323 2002 i
Варуна 874 42,80 40,48 45,13 280 2000 i
Иксион < 822 39,70 30,04 49,36 250 2001 i
2002 UX 25 681 +116 / −114 42,6 36,7 48,6 278 2002 i

В 1943 году Кеннет Эджворт опубликовал статью. Он писал, что материал за Нептуном слишком рассредоточен, поэтому не может слиться в более крупное тело. В 1951 году в обсуждение вступает Джерард Койпер. Он пишет о диске, появившемся в начале эволюции Солнечной системы. Идея с поясом всем понравилась, потому что она объясняла откуда прибывают кометы.

В 1980 году Хулио Фернандес определил, что Пояс Койпера находится на удаленности в 35-50 а.е. В 1988 году появляются компьютерные модели на основе его расчетов, которые показали, что Облако Оорта не может отвечать за все кометы, поэтому идея с поясом Койпера обретала больше смысла.

В 1987 году Дэвид Джуитт и Джейн Лу занялись активными поисками объектов, используя телескопы в Национальной обсерватории Кит-Пика и Обсерваторию Серро-Тололо. В 1992 году они объявили об открытии 1992 QB1, а через 6 месяцев – 1993 FW.

Но многие не согласны с этим названием, потому что Джерард Койпер имел в виду нечто иное и все почести следует отдать Фернандесу. Из-за возникших споров в научных кругах предпочитают использовать термин «транс-нептунианские объекты».

Состав Пояса Койпера

Как выглядит состав Пояса Койпера? На территории пояса проживают тысячи объектов, а в теории насчитывают 100000 с диаметром, превышающим 100 км. Полагают, что все они состоят из льда – смесь легких углеводородов, аммиака и водяного льда.

На некоторых объектах нашли водяной лед, а в 2005 году Майкл Браун определил, что на 50000 Кваваре есть водяной лед и гидрат аммиака. Оба этих вещества исчезли в процессе развития Солнечной системы, а значит на объекте есть тектоническая активность или же произошло метеоритное падение.

В поясе зафиксировали крупные небесные тела: Квавар, Макемаке, Хаумеа, Орк и Эриду. Они и стали причиной того, что Плутон сместили в категорию карликовых планет.

Изучение Пояса Койпера

В 2006 году НАСА отправили к Плутону зонд Новые Горизонты. Он прибыл в 2015 году, впервые продемонстрировав «сердце» карлика и бывшей 9-й планеты. Теперь он отправляется в сторону пояса, чтобы рассмотреть его объекты.

О поясе Койпера мало информации, поэтому он скрывает огромное количество комет. Наиболее известная – комета Галлея с периодичностью в 16000-200000 лет.

Будущее Пояса Койпера

Джерард Койпер полагал, что ТНО не будут существовать вечно. Пояс охватывает в небе примерно 45 градусов. Объектов много, и они постоянно сталкиваются, превращаясь в пыль. Многие считают, что пройдут сотни миллионов лет и от пояса ничего не останется. Будем надеяться, что миссия Новые Горизонты доберется раньше!

Тысячелетиями человечество наблюдало за прибытием комет и пыталось понять, откуда они берутся. Если при сближении со звездой ледяной покров испаряется, то они должны располагаться на большой отдаленности.

Со временем ученые пришли к выводу, что за чертой планетарных орбит находится масштабное облако с ледяными и каменными телами. Его назвали Облаком Оорта, но оно все еще существует в теории, потому что мы не можем его увидеть.

Определение Облака Оорта

Облако Оорта - теоретическое сферическое формирование, наполненное ледяными объектами. Находится на расстоянии 100000 а.е. от Солнца, из-за чего охватывает межзвездное пространство. Как и пояс Койпера, это хранилище транс-нептуновых объектов. О его существовании впервые заговорил Эрнест Опик, считавший, что кометы могут прилетать из области на краю Солнечной системы.

В 1950-м году Ян Оорт оживил концепцию и сумел даже объяснить принципы поведения долгосрочных комет. Существование облака не доказано, но его признали в научных кругах.

Структура и состав облака Оорта

Полагают, что облако способно располагаться в 100000-200000 а.е. от Солнца. Состав Облака Оорта включает две части: сферическое внешнее облако (20000-50000 а.е.) и дисковое внутреннее (2000-20000 а.е.). Во внешнем проживают триллионы тел с диаметром в 1 км и миллиарды 20-километровых. Сведений об общей массе нет. Но если комета Галлея выступает типичным телом, то подсчеты выводят на цифру в 3 х 10 25 кг (5 земель). Ниже представлен рисунок строения Облака Оорта.

Большая часть комет наполнена водой, этаном, аммиаком, метаном, цианидом водорода и монооксидом углерода. На 1-2% может состоять из астероидных объектов.

Происхождение облака Оорта

Есть мнение, что Облако Оорта - остаток от изначального протопланетного диска, сформировавшегося вокруг звезды Солнца 4.6 млрд. лет назад. Объекты могли сливаться ближе к Солнцу, но из-за контакта с масштабными газовыми гигантами были вытолкнуты на большою удаленность.

Исследование от ученых НАСА показало, что огромный объем облачных объектов выступает результатом обмена между Солнцем и соседними звездами. Компьютерные модели показывают, что галактические и звездные приливы меняют кометные орбиты, делая их более круглыми. Возможно, именно поэтому Облако Оорта принимает форму сферы.

Симуляции также подтверждают, что создание внешнего облака согласуется с идеей того, будто Солнце появилось в скоплении из 200-400 звезд. Древние объекты могли повлиять на формирование, потому что их было больше и чаще сталкивались.

Кометы из Облака Оорта

Полагают, что эти объекты спокойно дрейфуют в Облаке Оорта, пока не выйдут из привычного маршрута из-за гравитационного толчка. Так они становятся долгопериодическими кометами и наведываются во внешнюю систему.

Облако Оорта — удаленная структура Солнечной системы, существование которой обосновано теоретическими выкладками, но не доказано на практике. Предполагают, что отсюда начинают свое странствие долгопериодические кометы. Многие сведения о нашем уголке Вселенной, обнаруженные в процессе исследований, хорошо согласуются с гипотезой существования облака. Некоторые космические тела уже сегодня официально носят статус объектов этой гипотетической структуры. Однако непосредственно облако Оорта еще не было зафиксировано.

Открытие на кончике пера

Первое упоминание о возможном существовании такой структуры появилось в 1932 году. Автором предположения был советский ученый Эрнст Эпик. Спустя примерно двадцать лет, в 50-х годах прошлого века, нидерландский астроном Ян Оорт независимо выдвинул гипотезу о существовании структуры, являющейся источником долгопериодических комет. Впоследствии гипотетическое облако получило имя этого ученого.

Существовавшие на тот момент теории не могли объяснить того факта, что Солнечная система содержит достаточно внушительное число комет. Их орбиты непостоянны и, по логике, большинство из них должно было разрушиться в результате столкновения друг с другом или же с более массивными телами. Недолговечен и материал, из которого состоят кометы. Это в основном летучие вещества, испаряющиеся при приближении тела к Солнцу. Подобный процесс быстро приводит к разрушению ядра.

Оорт предположил, что кометы сформировались не на своих орбитах, а в удаленной от светила области. Там они проводят большую часть своей «жизни». Эта гипотеза объясняет значительное число сохранных по своей структуре комет.

Родина хвостатых странников

Сегодня существование облака Оорта признается большим числом астрономов всего мира. В современной науке, таким образом, принято выделять две зоны, в которых зарождаются кометы. Первая — это связанные пояс Койпера и рассеянный диск. Они считаются источником комет короткопериодического типа. Для них характерны достаточно близкие орбиты с незначительным наклонением к плоскости эклиптики. Период обращения таких тел вокруг Солнца - менее 200 лет.

Второй источник — это облако Оорта. Здесь находятся ядра долгопериодических комет (период обращения - более 200 лет). Для них характерны эллиптические, сильно вытянутые орбиты. Что касается угла наклона к плоскости эклиптики, то в случае с долгопериодическими кометами он может быть самым разным.

Протяженность

По самым минимальным оценкам, облако Оорта располагается на расстоянии 2-5 тысяч астрономических единиц от Солнца. Максимально его отодвигают вплоть до 50-100 или даже 200 а. е. Внешняя часть структуры является гравитационной границей Солнечной системы, так называемой сферой Хилла. Ее протяженность составляет, по оценкам ученых, два световых года.

Структура

Выделяют два облака Оорта Солнечной системы. Первое — внешнее сферическое — располагается на расстоянии 20-50 тысяч астрономических единиц от светила. Второе называется внутренним и имеет форму тора. Внешнее облако в меньшей степени испытывает влияние Солнца. Именно оно считается «родиной» долгопериодических комет, а также комет, относящихся к семейству Нептуна.

Внутреннее кольцо названо облаком Хиллса в честь Джека Хиллса, астронома, в 1981 году предположившего его существование. Согласно теоретическим подсчетам, внутреннее облако содержит значительно больше кометных ядер, чем внешнее. Отсюда они предположительно время от времени переходят в более удаленную область. Так происходит пополнение кометного «запаса» внешнего облака.

Еще одним вероятным источником космических тел в структуре Оорта является рассеянный диск. По расчетам уругвайского астронома Хулио Анхеля Фернандеса, около половины объектов этой части Солнечной системы перенаправлено во внешнюю область. Возможно, рассеянный диск до сих пор снабжает облако Оорта дополнительными кометными ядрами.

Происхождение

Солнечная система сформировалась примерно 4,6 миллиарда лет назад. По мнению ученых, в то время вокруг светила образовались молодые планеты и астероиды. Здесь же формировались и будущие объекты облака Оорта. После появления таких гигантов, как Юпитер, Уран и Нептун, орбиты этих космических тел стали значительно более вытянутыми. За траекторией движения Плутона постепенно начала формироваться структура, состоящая из кометных ядер. По расчетам ученых, максимальная суммарная масса была достигнута облаком Оорта приблизительно через 800 млн лет после появления. Позже в этой области стали преобладать процессы уменьшения количества объектов.

Эволюция

Сферическая форма внешнего облака сложилась под воздействием гравитации близлежащих звезд, а также так называемых галактических приливных сил. Последние воздействуют на космические объекты подобно Луне, влияющей на воды Мирового океана. Действие этих факторов изменило орбиты кометных ядер: они стали более приближенными по форме к круговым.

Астрофизики отмечают, что подобная судьба ждет и облако Хиллса. Под воздействием Солнца оно со временем также приобретет сферическую форму.

Объекты

«Население» облака Оорта — это миллиарды ледяных космических тел. Суммарная масса внешней его сферической части оценивается в 3*10 25 кг. Аналогичный параметр для облака Хиллса на данный момент остается неизвестным.

Ледяные объекты в результате воздействия проходящих мимо звезд попадают во внутренние области Солнечной системы. Здесь они классифицируются как долгопериодические кометы.

Объекты, «населяющие» облако, а также пояс Койпера, в основном состоят изо льда разного происхождения (замерзшие вода, аммиак, метан). Этим «местные жители» отличаются от космических тел, наполняющих Главный пояс астероидов, который располагается между орбитами Юпитера и Марса.

Гости с границы Солнечной системы

Помимо долгопериодических комет, к числу «жителей» облака Оорта относят такие транснептуновые объекты, как Седна, 2000 CR 105 , 2006 SQ 372 , 2008 KV 42 и 2012 VP 113 . Их орбиты характеризуются сильно удаленным афелием и значительным эксцентриситетом. В 2008 году были приведены доказательства того, что астероид 2006 SQ 372 относится к объектам облака Оорта. По поводу происхождения Седны и 2000 CR 105 ученые не сходятся во мнениях. Некоторые астрономы причисляют их к телам рассеянного диска. Все названные объекты на сегодняшний день остаются наиболее удаленными из открытых в Солнечной системе.

Трудности

Главный аргумент противников теории существования облака Оорта — тот факт, что его до сих пор никто не наблюдал. По мнению многих ученых, в пользу достоверности гипотезы свидетельствовала бы зернистость или смазанность на фотоизображениях удаленного космоса, сделанных телескопом «Хаббл». Однако подобных эффектов не наблюдается. Вопросы возникают и при детальном рассмотрении гипотезы происхождения облака.

Тем не менее большая часть научного мира склоняется к правдоподобности теории. Многие наблюдаемые факты, обнаруженные и теоретически выведенные закономерности хорошо согласуются с гипотезой о существовании облака Оорта. Сегодня малые тела Солнечной системы: астероиды, кометы, метеориты — находятся в центре внимания крупных международных исследовательских проектов. Поэтому вполне вероятно, что в ближайшее время астрофизики получат сведения, которые позволят однозначно доказать или опровергнуть теорию Яна Оорта.

Облако Оорта - гипотетическая сферическая область Солнечной системы, служащая источником долгопериодических комет. Инструментально существование облака Оорта не подтверждено, однако многие косвенные факты указывают на его существование. Предполагаемое расстояние до внешних границ облака Оорта от Солнца составляет от 50 000 до 100 000 а. е. - примерно, в среднем световой год. Это составляет примерно четверть расстояния до Проксимы Центавра, ближайшей к Солнцу звезды. и , две другие известные области транснептуновых объектов, по диаметру примерно в тысячу раз меньше облака Оорта. Внешняя граница облака Оорта определяет гравитационную границу Солнечной системы - сферу Хилла, определяемую для Солнечной системы в 2 св. года.
Облако Оорта, как предполагают, включает две отдельные области: сферическое внешнее облако Оорта и внутреннее облако Оорта в форме диска. Объекты в облаке Оорта в значительной степени состоят из водяных, аммиачных и метановых льдов. Астрономы полагают, что объекты, составляющие облако Оорта, сформировались около Солнца и были рассеяны далеко в космос гравитационными эффектами планет-гигантов на раннем этапе развития Солнечной системы. Считается, что облако Оорта является остатком исходного , который сформировался вокруг Солнца приблизительно 4,6 миллиарда лет назад.

Внутреннее облако Оорта

Модели предсказывают, что во внутреннем облаке в десятки или сотни раз больше кометных ядер, чем во внешнем. Его считают возможным источником новых комет для пополнения относительно скудного внешнего облака, поскольку оно постепенно исчерпывается. Облако Хиллса объясняет столь длительное существование облака Оорта в течение миллиардов лет.

Внешнее облако Оорта

Внешнее облако Оорта, как предполагают, содержит несколько триллионов ядер комет, больших чем приблизительно 1,3 км (приблизительно 500 миллиардов с абсолютной звёздной величиной более яркой чем 10,9), со средним расстоянием между кометами несколько десятков миллионов километров. Его полная масса достоверно не известна, но, предполагая, что комета Галлея - подходящий опытный образец для всех комет в пределах внешнего облака Оорта, предполагаемая общая масса равна 3·10 25 кг, или примерно в пять раз больше массы Земли. Ранее считалось, что облако более массивное (до 380 земных масс), но новейшие познания в распределении размеров долгопериодических комет привели к намного более низким оценкам. Масса внутреннего облака Оорта в настоящее время неизвестна.

Исходя из проведённых исследований комет, можно предположить, что подавляющее большинство объектов облака Оорта состоят из различных льдов, образованных такими веществами, как вода, метан, этан, угарный газ и циановодород. Однако открытие объекта 1996 PW, астероида с орбитой, более типичной для долгопериодических комет, наводит на мысль, что в облаке Оорта могут быть и скалистые объекты. Анализ соотношения изотопов углерода и азота в кометах как облака Оорта, так и семейства Юпитера показывает лишь небольшие различия, несмотря на их весьма обособленные области происхождения. Из этого следует, что объекты этих областей произошли из исходного протосолнечного облака. Это заключение также подтверждено исследованиями размеров частиц в кометах облака Оорта.

Существует мнение, что облако Оорта является единственным вероятным источником комет, которые сталкиваются с Землей с регулярными интервалами. Как указывает американский астрофизик Лиза Рэндалл, именно с влиянием облака Оорта связана периодичность массовых вымираний в биосфере Земли.


Ученые считают, что далеко за орбитой находится значительное количество обломков льда, камней и других мелких объектов. Это "облако" Кометоподобных объектов, вращающихся вокруг . Хотя они разбросаны в значительных расстояниях друг от друга, их количество может быть миллионы и даже миллиарды.

Как было открыто?

Облако Оорта иногда также называют Облако Оорта-Эпика. В 30-е годы ХХ века эстонский астроном Эрнст Эпик предположил, что кометы приходят из зоны так называемого отстоя - "облака", расположенного на краю Солнечной системы. В 1950 году, эту теорию детально развил датчанин Ян Оорта, благодаря нему, она была распространена и общепризнанна.

Объекты из Облака Оорта слишком далеки, чтобы иметь возможность наблюдать их непосредственно в телескоп. Существование облака было предложено в качестве гипотезы, объясняющей происхождение комет.

Каждый раз, когда комета проходит вблизи Солнца, она теряет часть своего материала (лед тает или разрушается на куски.) Таким образом, после нескольких кругов, каждая комета полностью исчезает. С начала Солнечной системы до настоящего времени не должно было бы сохраниться ни одной кометы. Но они есть, это означает, что кометы не должны постоянно приближаться к Солнцу, а иметь некую точку или траекторию существования вдали от Солнца.

Где расположено это Облако Оорта?

Если вы визуализируете расстояние от до Солнца как один "шаг", думаю, что облако Оорта простирается на расстояние до 50 000 и 100 000 из этих «шагов» от Cолнца! По научному – от 50 000 до 100 000 а.е. Это в тысячу раз больше, чем расстояние Плутона от Солнца, около 1/4 расстояния до ближайшей звезды - Альфа Центавра. Свету требуется год, чтобы пройти расстояние от Солнца до внешних границ облака Оорта.

Как возникло Облако Оорта?

Формирование объектов облака Оорта, началось во время формирования Солнечной системы. Тогда вокруг Солнца вращалось значительное количество мелких объектов. Под воздействием газовых гигантов, часть остатков вещества могла получить ускорение от Солнца, а часть к Солнцу. Те куски льда и материала, которые получили направление движение от Солнца и сформировали облако. Близлежащие звезды повлияли на сферичность облака. Однако, иногда, проходящих вблизи звезды нарушают орбиту твердых веществ, циркулирующих в облаке, и отправляют их по направлению к центру Солнечной системы. Такой объект рассматривается как комета.

Какой состав Облака Оорта?

Астрономы обнаружили объект Седна, который может принадлежать Облаку Оорта. Эта микро планета имеет диаметр от 1 180 до 1 800 км, а его сильно вытянутая орбита располагается от 76 а.е. до 928 а.е. Седна вращается вокруг Солнца с периодом обращения 11 250 земных лет.
Но с другой стороны некоторые ученые считают, что Седна принадлежит Поясу Койпера, и это доказывает, что он простирается на большие расстояния в глубину вселенной, чем считалось ранее.

Еще в далёком 1950 году астрофизик из Голландии Ян Оорт высказал мнение, что все кометы образуются в одном месте, некоем облаке, окружающем внутреннее пространство нашей Солнечной системы. Данное место именуется учеными «облако Оорта».

Расстояние до облака Оорта по сравнению с остальной частью Солнечной системы

Нередко поблизости Солнца можно наблюдать небесные тела, материя которых в окрестностях самой жаркой звезды испаряется и уносятся от нее космическими ветрами. Эти испаряющиеся небесные тела и есть кометы. Свидетельством того, что кометы держат свой путь из весьма удаленных участков Солнечной системы, является их вытянутая форма орбит. Ежегодно астрономами фиксируется движение около десятка комет. Но не астрономы одни любят наблюдать за небесными телами. Так, именно астрофизик Ян Оорт выдвинул следующую гипотезу: все кометы появляются в далеком облаке, которым окружена внешняя часть Солнечной системы.

Что из себя представляет облако?

Облако Оорта – ничто иное, как остаток протосолнечной туманности, давшей жизнь планетам и Солнцу. Каким образом? Да элементарно просто: путем слипания мельчайших частиц при помощи силы взаимного тяготения. Первичная туманность около центра была гораздо плотнее, поэтому планеты сформировались довольно быстро. В то время как ее внешние области были более разрежены, поэтому сходный процесс в них никак не завершался. Оорт изучил 19 различных комет и сделал вывод, что зачастую они следуют из некой области, расположенной в 20000 а.е. (), имея при этом начальную скорость в 1км/с. Подобная скорость позволяет утверждать, что место рождения комет расположено в пределах Солнечной системы, поскольку чужеродные ей тела обладают скоростью в среднем 20 км/с.

Что происходит с небесными телами внутри облака?

Седна, кандидат в объекты внутреннего облака Оорта

Принято считать, что в данном космическом облаке сосредотачивается не менее миллиарда «зародышей» будущих комет. Они представляют собой некие тела, свободно вращающиеся по своим орбитам, которые пока ни разу так и не приблизились к Солнцу. Если верить Оорту, подобных тел в составе облака собрано не менее 10 в 11-й степени. Но кроме них там можно обнаружить и миллиарды «состоявшихся» комет, то есть тех, которые уже имели встречу с главной звездой нашей системы. К слову, орбиты комет впоследствии будут зависеть от приближения друг к другу пока еще «зародышей» комет, от притяжения звезд, соседствующих с Солнцем, и еще от притяжения «возможно» существующих непосредственно в облаке Оорта тел на подобии планет и звезд.

Если заглянуть внутрь облака Оорта, можно понять, что кометные тела внутри него могут довольно долго просто свободно кружиться по нему, могут вырываться за пределы Солнечной системы, а могут устремляться к Солнцу. В последнем случае мы как раз и имеем возможность наблюдать самые настоящие кометы с хвостами. Современные исследования ученых позволяют заявлять, что облако простирается от Солнца на расстояние в 2 . Этот факт говорит также и, что орбита облака Оорта имеет радиус, превышающий в 3000 раз радиус орбиты планеты . Кроме того, есть сведения, что сумма масс всех планет меньше предполагаемой массы облака. А это значит, что сегодня пока рано говорить об окончательном формировании Солнечной системы и ее неизменности в будущем.

Есть ли особенности у этого необычного облака?

Вид со стороны

Оказывается, особенностей более чем достаточно. Прежде всего, стоит сказать, что свойства облака Оорта различны на разной удаленности от Солнца. Отметим, что за Плутоном и еще далеко не начало облака Оорта. Внешние его границы отделены довольно внушительной щелью, за которой следует внутреннее пространство облака. В этом месте движение кометных тел ничем не отличается от привычного движения планет. Они обладают стабильными и, в большинстве случаев, круговыми орбитами. А вот во внешней части облака кометы движутся как им вздумается: в разных плоскостях, ведомые притяжением Солнца или других звезд. Есть информация, что через каких-то 26000 лет к Солнцу настолько близко подберется , что к Земле и прочим планетам устремится поток комет, отклонившихся от своих орбит в облаке Оорта.

Есть вероятность, что подобные периоды «бомбежки» кометами случались и ранее. Именно в те моменты и усиливался процесс образования и формирования планет. Подсчитано, что пока существует наша планета, чужеродные звезды около десятка раз пронизали внутреннее пространство облака Оорта, усилив, таким образом, в тысячи раз движение комет. Длится это явление приблизительно 400000 лет, в ходе которого на Землю упадет в среднем две сотни комет, что в рамках науки принято считать настоящим космическим ливнем.

Наблюдение

На вопрос о том, можно ли увидеть облако Оорта своими глазами, отвечаем, что сделать это пока не удалось. Во-первых, потому что оно слишком разрежено, во-вторых, практически не освещается Солнцем, но главная причина в том, что мы с вами находимся непосредственно внутри него. Тем не менее, ученым посчастливилось наблюдать другие подобные облаку Оорта туманности. Они зарегистрировали едва заметные диски с такими же щелями около близ расположенных к нам звезд. Отсюда можно утверждать, что Солнечная система разделена на 4 части. То есть в ее состав входят планетная система, щель либо пояс Койпера и еще две составляющие – это внутренняя и внешняя области облака Оорта.