Удельная теплота сгорания всех видов газового топлива. Удельная теплота сгорания топлива и горючих материалов. Сравнение энергоемкости различных видов топлива

Всякое топливо, сгорая, выделяет теплоту (энергию), оцениваемую количественно в джоулях или в калориях (4,3Дж = 1кал). На практике для измерения количества теплоты, которое выделится при сгорании топлива, пользуются калориметрами - сложными устройствами лабораторного применения. Теплоту сгорания называют также теплотворной способностью.

Количество теплоты, получаемой от сжигания топлива, зависит не только от его теплотворной способности, но и от массы.

Для сравнения веществ по объёму энергии, выделяемой при сгорании, более удобна величина удельной теплоты сгорания. Она показывает количество теплоты, образуемой при сгорании одного килограмма (массовая удельная теплота сгорания) или одного литра, метра кубического (объёмная удельная теплота сгорания) топлива.

Принятыми в системе СИ единицами удельной теплоты сгорания топлива считаются ккал/кг, МДж/кг, ккал/м³, Мдж/м³, а также их производные.

Энергетическая ценность топлива определяется именно величиной его удельной теплоты сгорания. Связь между количеством теплоты, образуемой при сгорании топлива, его массой и удельной теплотой сгорания выражается простой формулой:

Q = q · m , где Q - количество теплоты в Дж, q - удельная теплота сгорания в Дж/кг, m - масса вещества в кг.

Для всех видов топлива и большинства горючих веществ величины удельной теплоты сгорания давно определены и сведены в таблицы, которыми пользуются специалисты при проведении расчётов теплоты, выделяемой при сгорании топлива или иных материалов. В разных таблицах возможны небольшие разночтения, объясняемые, очевидно, несколько отличающимися методиками измерений или различной теплотворной способностью однотипных горючих материалов, добываемых из разных месторождений.

Наибольшей энергоёмкостью из твёрдых видов топлива обладает каменный уголь - 27 МДж/кг (антрацит - 28 МДж/кг). Подобные показатели имеет древесный уголь (27 МДж/кг). Намного менее теплотворен бурый уголь - 13 Мдж/кг. Он к тому же содержит обычно много влаги (до 60 %), которая, испаряясь, снижает величину общей теплоты сгорания.

Торф сгорает с теплотой 14-17 Мдж/кг (зависит от его состояния - крошка, прессованый, брикет). Дрова, подсушенные до 20 % влажности, выделяют от 8 до 15 Мдж/кг. При этом количество энергии, получаемой от осины и от берёзы, может разниться практически вдвое. Примерно такие же показатели дают пеллеты из разных материалов - от 14 до 18 Мдж/кг.

Намного меньше, чем твёрдые, различаются величинами удельной теплоты сгорания жидкие виды топлива. Так, удельная теплота сгорания дизельного топлива - 43 МДж/л, бензина - 44 МДж/л, керосина - 43,5 МДж/л, мазута - 40,6 МДж/л.

Удельная теплота сгорания природного газа составляет 33,5 МДж/м³, пропана - 45 МДж/м³. Наиболее энергоёмким топливом из газообразных является газ водород (120 Мдж/м³). Он весьма перспективен для использования в качестве топлива, но на сегодняшний день пока не найдены оптимальные варианты его хранения и транспортировки.

Сравнение энергоемкости различных видов топлива


При сравнении энергетической ценности основных видов твёрдого, жидкого и газообразного топлива можно установить, что одному литру бензина или дизтоплива соответствует 1,3 м³ природного газа, одному килограмму каменного угля - 0,8 м³ газа, одному кг дров - 0,4 м³ газа.

Теплота сгорания топлива - это важнейший показатель эффективности, однако широта распространения его в сферах человеческой деятельности зависит от технических возможностей и экономических показателей использования.

    удельная теплота сгорания - удельная теплоёмкость — Тематики нефтегазовая промышленность Синонимы удельная теплоёмкость EN specific heat …

    Количество теплоты, выделяющееся при полном сгорании топлива массой 1 кг. Удельная теплота сгорания топлива определяется опытным путем и является важнейшей характеристикой топлива. См. также: Топливо Финансовый словарь Финам … Финансовый словарь

    удельная теплота сгорания торфа по бомбе - Высшая теплота сгорания торфа с учетом теплоты образования и растворения в воде серной и азотной кислот. [ГОСТ 21123 85] Недопустимые, нерекомендуемые теплотворная способность торфа по бомбе Тематики торф Обобщающие термины свойства торфа EN… … Справочник технического переводчика

    удельная теплота сгорания (топлива) - 3.1.19 удельная теплота сгорания (топлива): Суммарное количество энергии, высвобождаемое в регламентированных условиях сжигания топлива. Источник …

    Удельная теплота сгорания торфа по бомбе - 122. Удельная теплота сгорания торфа по бомбе Высшая теплота сгорания торфа с учетом теплоты образования и растворения в воде серной и азотной кислот Источник: ГОСТ 21123 85: Торф. Термины и определения оригинал документа … Словарь-справочник терминов нормативно-технической документации

    удельная теплота сгорания топлива - 35 удельная теплота сгорания топлива: Суммарное количество энергии, высвобождаемое в установленных условиях сжигания топлива. Источник: ГОСТ Р 53905 2010: Энергосбережение. Термины и определения оригинал документа … Словарь-справочник терминов нормативно-технической документации

    Это количество выделившейся теплоты при полном сгорании массовой (для твердых и жидких веществ) или объёмной (для газообразных) единицы вещества. Измеряется в джоулях или калориях. Теплота сгорания, отнесённая к единице массы или объёма топлива,… … Википедия

    Современная энциклопедия

    Теплота сгорания - (теплота горения, калорийность), количество теплоты, выделяющейся при полном сгорании топлива. Различают теплоту сгорания удельную, объемную и др. Например, удельная теплота сгорания каменного угля 28 34 МДж/кг, бензина около 44 МДж/кг; объемная… … Иллюстрированный энциклопедический словарь

    Теплота сгорания топлива удельная - Удельная теплота сгорания топлива: суммарное количество энергии, высвобождаемое в установленных условиях сжигания топлива...

В таблицах представлена массовая удельная теплота сгорания топлива (жидкого, твердого и газообразного) и некоторых других горючих материалов. Рассмотрено такое топливо, как: уголь, дрова, кокс, торф, керосин, нефть, спирт, бензин, природный газ и т. д.

Перечень таблиц:

При экзотермической реакции окисления топлива его химическая энергия переходит в тепловую с выделением определенного количества теплоты. Образующуюся тепловую энергию принято называть теплотой сгорания топлива. Она зависит от его химического состава, влажности и является основным . Теплота сгорания топлива, отнесенная на 1 кг массы или 1 м 3 объема образует массовую или объемную удельную теплоты сгорания.

Удельной теплотой сгорания топлива называется количество теплоты, выделяемое при полном сгорании единицы массы или объема твердого, жидкого или газообразного топлива. В Международной системе единиц эта величина измеряется в Дж/кг или Дж/м 3 .

Удельную теплоту сгорания топлива можно определить экспериментально или вычислить аналитически. Экспериментальные методы определения теплотворной способности основаны на практическом измерении количества теплоты, выделившейся при горении топлива, например в калориметре с термостатом и бомбой для сжигания. Для топлива с известным химическим составом удельную теплоту сгорания можно определить по формуле Менделеева .

Различают высшую и низшую удельные теплоты сгорания. Высшая теплота сгорания равна максимальному количеству теплоты, выделяемому при полном сгорании топлива, с учетом тепла затраченного на испарение влаги, содержащейся в топливе. Низшая теплота сгорания меньше значения высшей на величину теплоты конденсации , который образуется из влаги топлива и водорода органической массы, превращающегося при горении в воду.

Для определения показателей качества топлива, а также в теплотехнических расчетах обычно используют низшую удельную теплоту сгорания , которая является важнейшей тепловой и эксплуатационной характеристикой топлива и приведена в таблицах ниже.

Удельная теплота сгорания твердого топлива (угля, дров, торфа, кокса)

В таблице представлены значения удельной теплоты сгорания сухого твердого топлива в размерности МДж/кг. Топливо в таблице расположено по названию в алфавитном порядке.

Наибольшей теплотворной способностью из рассмотренных твердых видов топлива обладает коксующийся уголь — его удельная теплота сгорания равна 36,3 МДж/кг (или в единицах СИ 36,3·10 6 Дж/кг). Кроме того высокая теплота сгорания свойственна каменному углю, антрациту, древесному углю и углю бурому.

К топливам с низкой энергоэффективностью можно отнести древесину, дрова, порох, фрезторф, горючие сланцы. Например, удельная теплота сгорания дров составляет 8,4…12,5, а пороха — всего 3,8 МДж/кг.

Удельная теплота сгорания твердого топлива (угля, дров, торфа, кокса)
Топливо
Антрацит 26,8…34,8
Древесные гранулы (пиллеты) 18,5
Дрова сухие 8,4…11
Дрова березовые сухие 12,5
Кокс газовый 26,9
Кокс доменный 30,4
Полукокс 27,3
Порох 3,8
Сланец 4,6…9
Сланцы горючие 5,9…15
Твердое ракетное топливо 4,2…10,5
Торф 16,3
Торф волокнистый 21,8
Торф фрезерный 8,1…10,5
Торфяная крошка 10,8
Уголь бурый 13…25
Уголь бурый (брикеты) 20,2
Уголь бурый (пыль) 25
Уголь донецкий 19,7…24
Уголь древесный 31,5…34,4
Уголь каменный 27
Уголь коксующийся 36,3
Уголь кузнецкий 22,8…25,1
Уголь челябинский 12,8
Уголь экибастузский 16,7
Фрезторф 8,1
Шлак 27,5

Удельная теплота сгорания жидкого топлива (спирта, бензина, керосина, нефти)

Приведена таблица удельной теплоты сгорания жидкого топлива и некоторых других органических жидкостей. Следует отметить, что высоким тепловыделением при сгорании отличаются такие топлива, как: бензин, дизельное топливо и нефть.

Удельная теплота сгорания спирта и ацетона существенно ниже традиционных моторных топлив. Кроме того, относительно низким значением теплоты сгорания обладает жидкое ракетное топливо и — при полном сгорании 1 кг этих углеводородов выделится количество теплоты, равное 9,2 и 13,3 МДж, соответственно.

Удельная теплота сгорания жидкого топлива (спирта, бензина, керосина, нефти)
Топливо Удельная теплота сгорания, МДж/кг
Ацетон 31,4
Бензин А-72 (ГОСТ 2084-67) 44,2
Бензин авиационный Б-70 (ГОСТ 1012-72) 44,1
Бензин АИ-93 (ГОСТ 2084-67) 43,6
Бензол 40,6
Дизельное топливо зимнее (ГОСТ 305-73) 43,6
Дизельное топливо летнее (ГОСТ 305-73) 43,4
Жидкое ракетное топливо (керосин + жидкий кислород) 9,2
Керосин авиационный 42,9
Керосин осветительный (ГОСТ 4753-68) 43,7
Ксилол 43,2
Мазут высокосернистый 39
Мазут малосернистый 40,5
Мазут низкосернистый 41,7
Мазут сернистый 39,6
Метиловый спирт (метанол) 21,1
н-Бутиловый спирт 36,8
Нефть 43,5…46
Нефть метановая 21,5
Толуол 40,9
Уайт-спирит (ГОСТ 313452) 44
Этиленгликоль 13,3
Этиловый спирт (этанол) 30,6

Удельная теплота сгорания газообразного топлива и горючих газов

Представлена таблица удельной теплоты сгорания газообразного топлива и некоторых других горючих газов в размерности МДж/кг. Из рассмотренных газов наибольшей массовой удельной теплотой сгорания отличается . При полном сгорании одного килограмма этого газа выделится 119,83 МДж тепла. Также высокой теплотворной способностью обладает такое топливо, как природный газ — удельная теплота сгорания природного газа равна 41…49 МДж/кг (у чистого 50 МДж/кг).

Удельная теплота сгорания газообразного топлива и горючих газов (водород, природный газ, метан)
Топливо Удельная теплота сгорания, МДж/кг
1-Бутен 45,3
Аммиак 18,6
Ацетилен 48,3
Водород 119,83
Водород, смесь с метаном (50% H 2 и 50% CH 4 по массе) 85
Водород, смесь с метаном и оксидом углерода (33-33-33% по массе) 60
Водород, смесь с оксидом углерода (50% H 2 50% CO 2 по массе) 65
Газ доменных печей 3
Газ коксовых печей 38,5
Газ сжиженный углеводородный СУГ (пропан-бутан) 43,8
Изобутан 45,6
Метан 50
н-Бутан 45,7
н-Гексан 45,1
н-Пентан 45,4
Попутный газ 40,6…43
Природный газ 41…49
Пропадиен 46,3
Пропан 46,3
Пропилен 45,8
Пропилен, смесь с водородом и окисью углерода (90%-9%-1% по массе) 52
Этан 47,5
Этилен 47,2

Удельная теплота сгорания некоторых горючих материалов

Приведена таблица удельной теплоты сгорания некоторых горючих материалов ( , древесина, бумага, пластик, солома, резина и т. д.). Следует отметить материалы с высоким тепловыделением при сгорании. К таким материалам можно отнести: каучук различных типов, пенополистирол (пенопласт), полипропилен и полиэтилен.

Удельная теплота сгорания некоторых горючих материалов
Топливо Удельная теплота сгорания, МДж/кг
Бумага 17,6
Дерматин 21,5
Древесина (бруски влажностью 14 %) 13,8
Древесина в штабелях 16,6
Древесина дубовая 19,9
Древесина еловая 20,3
Древесина зеленая 6,3
Древесина сосновая 20,9
Капрон 31,1
Карболитовые изделия 26,9
Картон 16,5
Каучук бутадиенстирольный СКС-30АР 43,9
Каучук натуральный 44,8
Каучук синтетический 40,2
Каучук СКС 43,9
Каучук хлоропреновый 28
Линолеум поливинилхлоридный 14,3
Линолеум поливинилхлоридный двухслойный 17,9
Линолеум поливинилхлоридный на войлочной основе 16,6
Линолеум поливинилхлоридный на теплой основе 17,6
Линолеум поливинилхлоридный на тканевой основе 20,3
Линолеум резиновый (релин) 27,2
Парафин твердый 11,2
Пенопласт ПХВ-1 19,5
Пенопласт ФС-7 24,4
Пенопласт ФФ 31,4
Пенополистирол ПСБ-С 41,6
Пенополиуретан 24,3
Плита древесноволокнистая 20,9
Поливинилхлорид (ПВХ) 20,7
Поликарбонат 31
Полипропилен 45,7
Полистирол 39
Полиэтилен высокого давления 47
Полиэтилен низкого давления 46,7
Резина 33,5
Рубероид 29,5
Сажа канальная 28,3
Сено 16,7
Солома 17
Стекло органическое (оргстекло) 27,7
Текстолит 20,9
Толь 16
Тротил 15
Хлопок 17,5
Целлюлоза 16,4
Шерсть и шерстяные волокна 23,1

Источники:

  1. ГОСТ 147-2013 Топливо твердое минеральное. Определение высшей теплоты сгорания и расчет низшей теплоты сгорания.
  2. ГОСТ 21261-91 Нефтепродукты. Метод определения высшей теплоты сгорания и вычисление низшей теплоты сгорания.
  3. ГОСТ 22667-82 Газы горючие природные. Расчетный метод определения теплоты сгорания, относительной плотности и числа Воббе.
  4. ГОСТ 31369-2008 Газ природный. Вычисление теплоты сгорания, плотности, относительной плотности и числа Воббе на основе компонентного состава.
  5. Земский Г. Т. Огнеопасные свойства неорганических и органических материалов: справочник М.: ВНИИПО, 2016 — 970 с.

Энергоемкость топлив

Важнейшей характеристикой топлива является его энерго­емкость, или теплота сгорания. Под энергоемкостью (или тепло­той сгорания) следует понимать количество теплоты, выделив­шейся при полном сгорании единицы массы или объема топлива и замеренной при постоянных давлении и температуре (обычно при 25 °С).

В технике пользуются значением низшей теплоты сгорания 1 кг (весовой) или 1 л (объемной) топлива. Низшая теплота сгорания топлива (расчетная) получается уменьшением значе­ния высшей теплоты сгорания (экспериментальной) на количе­ство тепла, затраченного для испарения некоторых продуктов сгорания, которые при нормальной температуре являются жид­костями. В основном - это вода, которая выводится из двигателя с продуктами сгорания в парообразном состоянии. При этом ис­ходят из того, что тепло образования водяных паров теряется безвозвратно.

В том случае, когда среди продуктов сгорания топлива не оказывается соединений, конденсирующихся при нормальной температуре, например при сжигании СО в СО 2 , высшая и низшая теплоты сгорания равны.

Для работы современных карбюраторных, дизельных и ра­кетных двигателей важно знать также теплоту сгорания рабо­чей смеси, состоящей из горючего и окислителя, в количестве, достаточном для полного сгорания горючего. При этом наи­большая теплота сгорания будет у рабочей.смеси, в которой стехиометрическое соотношение топливо: окислитель? равно 1.

Значение низшей теплоты сгорания рабочих смесей, состоящих из паров углеводородов с воздухом, приближается к 667- 674 ккал/кг.

Углеводородные топлива характеризуются высокой теплотой сгорания. Продуктами их полного сгорания являются, главным образом, двуокись углерода и вода. Лишь водород, бериллий и бор имеют большие теплоты сгорания, чем углеводороды. Одна­ко при их использовании в качестве топлив возникают весьма сложные проблемы, которые здесь не рассматриваются. По эк­сплуатационным свойствам углеводороды как топлива отличаются значительными преимуществами.

Теплоту сгорания определяют сжиганием навески топлива в калориметрической бомбе, заполненной кислородом под давле­нием. Метод этот сложен, и для его осуществления требуются специальные условия.

Для определения теплоты сгорания при помощи расчетов широко пользуются эмпирическими формулами, точность кото­рых составляет ±2-3%.

В основу эмпирических расчетных формул, составленных раз­личными авторами, положены следующие данные.

1. Элементарный состав топлива. В этом случае исходят из того, что теплота сгорания топлива равна сумме теплот сгорания отдельных элементов его составляющих.

2. Количество кислорода (воздуха), необходимого для сгора­ния топлива. В основу эмпирических формул положено количе­ство кислорода, необходимое для полного сгорания элементов, составляющих топливо. Наибольшей точностью из формул этого типа отличается формула Коновалова:

Q н = 3050 К

Где Q н - низшая теплота сгорания топлива, ккал/кг; К - количе­ство кислорода, необходимого для сгорания единицы массы то­плива, рассчитываемое по формуле:

где С, Н, О - содержание углерода, водорода и кислорода в то­пливе, вес. %.

3. Теплота образования. Эмпирические формулы основаны на законе Гесса, из которого следует, что теплота сгорания топли­ва соответствует разности между теплотой образования сжигае­мого топлива и суммой теплот образования конечных продуктов его сгорания (воды, двуокиси углерода и др.).

4. Физико-химические характеристики топлива. Для углево­дородных жидких топлив, состоящих в основном из двух эле­ментов-углерода и водорода, устанавливается определенная зависимость между отношением этих элементов, температурой их выкипания, анилиновой точкой, плотностью, строением углеводо­родов и другими физико-химическими показателями, с одной стороны, и теплотой сгорания - с другой.

Для углеводородных топлив, имеющих плотность от 0,510 до 0,990, весовая теплота сгорания может быть определена с точ­ностью до 3-5% (для фракций алканового основания до 1 - 1,5%) по формулам Крагоэ:

где?-плотность топлива при 15°С; Q в - высшая теплота сго­рания, ккал/кг; О н - низшая теплота сгорания, ккал/кг.

Установлено, что при использовании этой формулы наимень­шая погрешность составляет 40 ккал/кг; для смесси ароматичес­ких углеводородов с алканами наибольшая погрешность дости­гает 400-530 ккал/кг.

Лаврентьев предложил эмпирическую формулу для расчета низшей весовой теплоты сгорания по значению показателя пре­ломления:

Для товарных реактивных топлив максимальное отклонение вычисленных данных, определенных экспериментально, со­ставляет ±95 ккал/кг при среднем отклонении ±1,4 ккал/кг. Не­удовлетворительные результаты получаются для узких нефтяных фракций, индивидуальных углеводородов, особенно ароматиче­ских углеводородов, для которых величина отклонения превос­ходит 400 ккал/кг.

Более точные результаты (отклонение ±20-25 ккал/кг), в том числе для ароматических углеводородов, дает формула, в которой используется показатель преломления и анилиновая точка:

где t A - анилиновая точка, °С.

Для среднедистиллятных нефтяных топлив можно достаточно точно рассчитать низшую весовую теплоту сгорания, зная содер­жание водорода, по формуле:

где Н - содержание водорода, вес. %.

Многие авторы считают, что наибольшая точность достигает­ся при использовании расчетных формул, в которых представлена зависимость между теплотой сгорания, плотностью и анилиновой точкой среднедистиллятных топлив. Результаты расчета при использовании такой зависимости приняты во всех спецификаци­ях США и других стран на реактивные топлива наравне со зна­чениями, определенными экспериментально. Для керосинов отклонения от экспериментальных данных составляют 12- 14 ккал/кг, максимальные отклонения ± 45 ккал/кг. Неболь­шое содержание олефинов в керосинах существенно не влияет на результаты. Для алкилатов и индивидуальных углеводородов, кипящих в пределах керосиновых фракций, этот метод мало пригоден.

В спецификациях на реактивные топлива приводится коэффи­циент теплопроводности, представляющий собой произведение плотности, выраженной в °АРI (АSТМ D 287-55), и анилино­вой точки в °F (АSТМ D 611-55Т), изменяющейся с тепло­той сгорания топлива по линейной зависимости. В результате проверки этого метода на многочисленных образцах реактивных топлив нашей страны была предложена формула:

где К - коэффициент теплотворности топлива, численно равный произведению плотности топлива в °АРI и анилиновой точки в °F. Плотность определяется при 15,6 °С по ГОСТ 3900-47, а ани­линовая точка - методом равных объемов (ОСТ 17872 М. И. 20К-40). Для получения плотности в °АРI, а анилиновой точки в °F пользуются переводными таблицами, приведенными в рабо­тах.

При использовании этой формулы можно получить результа­ты с точностью до 0,12% и максимальным отклонением 0,43% для нефтепродуктов плотностью? 5.16 15.6 =0,8448-0,7585 (36- 55°АРI), имеющих анилиновую точку 51-78,3 °С (124-173°F) и коэффициенты теплотворности в пределах от 4414 до 8969.

Некоторая ошибка получается при наличии в топливе серы. Так, при 1 % серы значение теплоты сгорания для керосина мо­жет быть завышено приблизительно на 60 ккал/кг. Поэтому для расчета низшей теплоты сгорания предлагается формула, учи­тывающая содержание серы:

где Q н -теплота сгорания топлива, содержащего серу, ккал/кг;

Q н - теплота сгорания, рассчитанная для топлива по анилиновой точке и плотности без учета содержания серы, ккал/кг; %S- содержание серы в топливе, вес. %.


Зная плотность? 15.6 15.6 и вязкость топлива (в сст) при 37,8 °С, по номограмме (рис. 18) можно определить анилиновую точку в °С, а затем перевести в °F. Отклонения для керосинов от данных, полученных стандартным методом, не превышают ± 2%.

Ниже приведены коэффициенты теплотворности и значения низшей весовой теплоты сгорания для различных реактивных топлив, рассчитанные по формуле.

Для упрощения расчетов предложены номограммы, состав­ленные на основании зависимости между физико-химическими и энергетическими характеристиками нефтяных фракций. Ниже в качестве примера представлена одна из подобных номограмм,


построенная на основе зависимости между плотностью, молеку­лярным весом, псевдокритическим давлением, анилиновой точ­кой, средней температурой кипения, теплотой испарения и выс­шей теплотой сгорания для нефтяных фракций (рис. 19).

Зная две какие либо характеристики из названных, можно по номо­грамме определить остальные. При работе с номограммой среднюю температуру кипения фракции можно принять равной температуре выкипания 50 объемн. % этой фракции в условиях стандартной разгонки.

Поскольку на номограмме приведены значения высшей тепло­ты сгорания, значение низшей теплоты сгорания можно рассчи­тать по формуле:

где К - содержание в топливе воды, вес. %.

Отклонения данных, полученных по номограмме, от фактиче­ских данных составляют 1%.


На рис. 20 приведена номограмма зависимости между низ­шей объемной теплотой сгорания, плотностью, вязкостью и сред­ней температурой выкипания дизельных топлив.

По такой номограмме при помощи известных характеристик можно легко определить объемную теплоту сгорания дизельных топлив.

Теплота сгорания зависит от элементарного состава углеводо­родов топлива, что подтверждается следующими данными:


Весовая теплота сгорания водорода в 3,5 раза больше весовой теплоты сгорания углерода. Чем выше содержание водорода, тем выше теплота сгорания углеводородного топлива.

Для алканов среднедистиллятных фракций содержание угле­рода изменяется незначительно - в пределах 84-85%, для цикланов эта величина постоянна и составляет приблизительно 85,75%, для ароматических углеводородов она изменяется в ши­роких пределах - от 91 до 87,5% и зависит от длины боковых цепей.


Весовые теплоты сгорания топлива изменяются в соответст­вии с содержанием углерода: для алканов и цикланов незначи­тельно, а для ароматических углеводородов с числом углеродных атомов от 6 до 20 - до 700 ккал (рис. 21). Плотность ? 4 20 углеводородов, составляющих товарные топлива и выкипающих в пределах 80-300°С, изменяется следующим образом :

Плотность в пределах одного класса углеводородов изменя­ется значительно. Она определяется не только молекулярным весом, но и структурой углеводородов. Вследствие этого объем­ные теплоты сгорания углеводородов существенно различаются.

Для углеводородов промышленных фракций, однотипных по строению и выкипающих в пределах 100-300°С, разница меж­ду максимальной и минимальной величинами весовой теплоты сгорания составляет от 30 до 350 ккал/кг, объемной- от 30 до 1100 ккол/л. Особенно велика разница объемной теплоты сгора­ния у цикланов - 700-1100 ккал/л (табл. 19).


Объемную теплоту сгорания можно значительно увеличить, одновременно сохраняя на достаточно высоком уровне весовую теплоту сгорания, вовлечением в состав топлив цикланов опре­деленного строения.

Нефтяные топлива характеризуются теплотой сгорания, близ­кой к верхнему возможному пределу. Однако для дальнейшего увеличения теплоты сгорания углеводородных топлив остаются некоторые резервы. Все больше синтезируется, а также выделя­ется из нефти углеводородов такого строения, теплоты сгорания (весовые и объемные) которых существенно превышают тепло­ты сгорания товарных нефтяных фракций. На основе таких угле­водородов предлагаются новые композиции высокоэнергетичес­ких топлив, столь необходимых для реактивных и ракетных дви­гателей.

Применение топлива с повышенной теплотой сгорания для карбюраторных и дизельных двигателей приведет к снижению его удельного расхода (поскольку теплота сгорания рабочей смеси должна быть постоянной); к уменьшению объема топлив­ных баков при том же радиусе действия машин; к некоторому изменению сечения жиклеров в соответствии с количеством по­ступающего топлива. Мощность карбюраторных и дизельных двигателей не зависит от теплоты сгорания топлива и, следова­тельно, остается неизменной.

Для реактивных и ракетных двигателей, в которых сила тяги создается только за счет сил реакции газов, вытекающих из со­пла, теплота сгорания топлива играет большую роль. Сила тяги воздушно-реактивного двигателя представляет равнодействую­щую сил воздушного и газового потоков, оказывающую влияние на элементы "Проточной части и наружной поверхности двигате­ля. Она прямо пропорциональна количеству воздуха, проходяще­го через реактивный двигатель, и скорости истечения газов через его сопло. Весовой расход топлива составляет 1,5-2% от весового расхода воздуха. Топливо, сгорая, нагревает воздух и тем самым увеличи­вает его кинетическую энергию, расхо­дуемую на полезную работу и компенса­цию потерь. Поэтому чем выше теплота сгорания топлива, тем большую полез­ную работу сможет дать двигатель.

Увеличение теплоты сгорания топли­ва приведет к увеличению объема газов, проходящих через двигатель, и, следова­тельно, к увеличению скорости их исте­чения, что повысит к. п. д. двигателя. Авиационные топлива, выделяющие при сгорании большее количество тепла, поз­воляют увеличить дальность полета или грузоподъемность самолета. О зависимо­сти между энергоемкостью авиационно­го реактивного топлива и дальностью по­лета самолета можно судить по формуле Брегэ:

где К - дальность оолета; Q н - весовая низшая теплота сгорания топлива; ? - суммарный к. п. д. двигателя; L / D - отношение подъемной силы к лобовому сопротивлению; W 0 - вес самолета при старте; W f - вес залитого в баки само­лета топлива.

Из приведенной формулы следует, что дальность полета самолета изменяется (прямо пропорционально теплоте, выде­ляющейся при сгорании топлива. Таким образом, при постоянном весе топлива повышение его весовой теплоты сгорания позволит в реактивном двигателе не только достичь преимуществ, указанных для карбюраторных двигателей, но и увеличить мощность двигателя, скорость м дальность полета самолета или умень­шить удельный расход топлива.

Увеличение объемной теплоты сгора­ния топлива, связанное с обязательным возрастанием его плотности, даст преи­мущества лишь в том случае, если при­рост теплоты сгорания превзойдет потери энергии, которую необходимо будет дополнительно затратить вследствие увеличения полетного веса самолета, загруженного та­ким же объемом топлива, но имеющего большую плотность. Кри­терием энергетической оценки топлива будет являться удельная теплота сгорания загруженного топлива, отнесенная к единице по­летного веса летательного аппарата.

Весьма желательно равенство значений весовой и объемной теплоты сгорания топлив; к такому равенству можно прибли­зиться, увеличивая плотность углеводородной смеси до единицы.

Выполнить это условие пока трудно, хотя мето­дом синтеза удается по­лучить насыщенные угле­водороды, плотность кото­рых превышает 0,9 г/см 3 .

На рис. 22 показано влияние теплоты сгорания и плотности топлива на дальность полета самоле­та при различных высо­тах. Как видно из рисун­ка, энергетические преи­мущества топлива с по­вышенной плотностью наиболее ощутимы при большой скорости полета (2,5-4 Маха).

При необходимости увеличения дальности по­лета топливо с большей весовой теплотой сгорания в сравнимых условиях будет обладать (преимуществом перед топливом с большей объемной теплотой сго­рания (большей плотностью). На дальних расстояниях при использовании последних будет расходоваться дополнительная энергия на их перевозку.

Для ракетного двигателя значение топлива с высокой тепло­той сгорания еще более возрастает. Высота взлета ракетного двигателя увеличивается во столько раз, во сколько увеличива­ется теплота сгорания топлива. Таким образом, при использова­нии для ракетных двигателей топлив с более высокой теплотой сгорания достигаются преимущества, указанные для воздушно-ракетных двигателей, и увеличивается высота взлета ракеты.

Исследователи стремятся получить такое углеводородное то­пливо, которое возможно полнее отвечало бы требованиям реак­тивных сверхзвуковых и тем более ракетных двигателей. Такие топлива должны характеризоваться высокой весовой и объемной теплотой сгорания при минимальном различии их значений. Кро­ме того, углеводороды, составляющие топлива, должны обладать удовлетворительными низкотемпературными свойствами, высо­кой химической стабильностью при повышенных температурах, пределами кипения и др. Предпринимаются попытки получения таких топлив не только на основе соответствующих нефтяных фракций и однотипных по химическому строению групп углево­дородов, но и на основе сложного синтеза индивидуальных соединений, хотя этот путь намного дороже. В табл. 20 приведены сведения о некоторых синтезированных для этой цели в США индивидуальных углеводородах по данным патентной литерату­ры, опубликованной в основном в 1964 г.


Как видно из данных табл. 20, осуществлен синтез углеводо­родов сложных и интересных структур. Исследование их свойств свидетельствует об известных возможностях, обнаруженных на этом пути. Большинство углеводородов являются би- и трицикланами с очень высокой плотностью, а следовательно, высокой объемной теплотой сгорания.

По-видимому, циклановые углеводороды в целом отвечают требованиям, предъявляемым к топливу, ;В большей мере, чем углеводороды иного строения. Можно предвидеть, что изоалка- новые углеводороды определенного строения также окажутся благоприятным материалом для этой цели.

Поскольку для реактивных топлив сверхзвуковых самолетов наиболее подходящим и доступным в настоящее время материалом являются циклановые углеводороды, характеризующиеся доста­точно высокой весовой теплотой сгорания и плотностью, значения низшей весовой теплоты сгорания цикланов различного строения при 25°С (в ккал/кг).

Наряду с цикланами большое внимание заслуживают с точки зрения использования в качестве высокоэнергетических топлив изоалкановые углеводороды, характеризующиеся максимальным содержанием водорода, а следовательно, максимальной весовой теплотой сгорания. Сложность заключается в "Подборе таких структур изоалканов, низкотемпературная характеристика кото­рых (температура застывания, кристаллизации, вязкость и ее из­менение с температурой) была бы удовлетворительной, а плот­ность максимальной.

К числу таких углеводородов относятся, по-видимому, алканы гребенчатого строения с компактно и симметрично расположенны­ми короткими боковыми цепями, имеющими один или два угле­родных атома. Предстоит изыскать наиболее экономически це­лесообразный путь получения алканов," отвечающих такому строению.

Известна еще одна группа углеводородов, энергоемкость ко­торых складывается не только из теплот сгорания элементов, но и из энергии, выделяющейся при разрушении их кратных связей и напряженных циклов. К ним относятся производные ацетилена и углеводороды, в структуре которых имеются циклопропановые кольца. Энергия ацетиленовой связи -С=С- составляет около


195 ккал/моль, т. е. более чем в два раза больше энергии свя­зи (84 ккалімоль). Однако реализовать эту дополнительную энергию весьма сложно из-за склонности ацетилено­вых углеводородов полимеризоваться по месту ненасыщенных связей. При сгорании циклопропана и его гомологов также вы­деляется дополнительная энергия, которая в отличие от энергии ацетиленовой связи может быть использована. В табл. 21 при­ведены теплоты образования и сгорания некоторых углеводоро­дов с простыми и кратными связями, а также напряженными ци­клами.

Как видно из данных табл. 21, циклопропан и ацетиленовые углеводороды характеризуются весьма высокими теплотами сго­рания, намного превышающими теплоты сгорания насыщенных углеводородов с таким же числом углеродных атомов в молеку­ле, но не имеющих столь напряженных связей. Наибольшую те­плоту сгорания имеет циклопропан. Гомологи циклопропана ха­рактеризуются несколько меньшей теплотой сгорания. Так, низ­шая весовая теплота сгорания фенилциклопропана равна 10 280 ккал/кг, циклогексилциклопропана 10 610 ккал/кг. Гомологи циклопропана имеют следующие весьма важные преиму­щества по сравнению с ацетиленами: хорошую стабильность при хранении, низкотемпературные свойства, невзрываемость и др.

Очевидно, ди- и трициклопропаны будут представлять собой топлива, отличающиеся наибольшей энергоемкостью среди угле­водородов иного строения, в том числе алканов.

В табл. 22 приводятся значения удельных импульсов для ракет­ных топливных систем при использовании в качестве горючего ацетилена или циклопропана.


Циклопропилуглеводороды могут быть получены в процессе довольно сложного синтеза, проходящего в несколько стадий. Ацетиленовые углеводороды могут быть получены в из­вестных промышленных процессах.

В отличие от циклопропанов, которые являются довольно ста­бильными, ацетилены нуждаются в специальных стабилизирующих добавках и с ними надо обращаться, как со взрывчатыми вещест­вами.

Таким образом, возможность получения углеводородов с бо­лее высокой энергоемкостью нельзя считать исчерпанной.

5.ТЕПЛОВОЙ БАЛАНС ГОРЕНИЯ

Рассмотрим методы расчета теплового баланса процесса горения газообразных, жидких и твердых топлив. Расчет сводится к решению следующих задач.

· Определение теплоты горения (теплотворной способности) топлива.

· Определение теоретической температуры горения.

5.1. ТЕПЛОТА ГОРЕНИЯ

Химические реакции сопровождаются выделением или поглощением теплоты. При выделении теплоты реакция называется экзотермической, а при поглощении – эндотермической. Все реакции горения являются экзотермическими, а продукты горения относятся к экзотермическим соединениям.

Выделяемая (или поглощаемая) при протекании химической реакции теплота называется теплотой реакции. В экзотермических реакциях она положительна, в эндотермических – отрицательна. Реакция горения всегда сопровождается выделением теплоты. Теплотой горения Q г (Дж/моль) называется количество теплоты, которое выделяется при полном сгорании одного моля вещества и превращении горючего вещества в продукты полного горения. Моль является основной единицей количества вещества в системе СИ. Один моль – это такое количество вещества, в котором находится столько же частиц (атомов, молекул и т.д.), сколько содержится атомов в 12 г изотопа углерода–12. Масса количества вещества, равного 1 молю (молекулярная или молярная масса) численно совпадает с относительной молекулярной массой данного вещества.

Например, относительная молекулярная масса кислорода (O 2) равна 32, углекислого газа (CO 2) равна 44, а соответствующие молекулярные массы будут равны M =32 г/моль и M =44 г/моль. Таким образом, в одном моле кислорода содержится 32 грамма этого вещества, а в одном моле CO 2 содержится 44 грамма углекислого газа.

В технических расчетах чаще используется не теплота горения Q г , а теплотворная способность топлива Q (Дж/кг или Дж/м 3). Теплотворной способностью вещества называется количество теплоты, которое выделяется при полном сгорании 1 кг или 1 м 3 вещества. Для жидких и твердых веществ расчет проводится на 1 кг, а для газообразных – на 1 м 3 .

Знание теплоты горения и теплотворной способности топлива необходимо для расчета температуры горения или взрыва, давления при взрыве, скорости распространения пламени и других характеристик. Теплотворная способность топлива определяется либо экспериментальным, либо расчетным способами. При экспериментальном определении теплотворной способности заданная масса твердого или жидкого топлива сжигается в калориметрической бомбе, а в случае газообразного топлива – в газовом калориметре. С помощью этих приборов измеряется суммарная теплота Q 0 , выделяющаяся при сгорании навески топлива массой m . Величина теплотворной способности Q г находится по формуле

Связь между теплотой горения и
теплотворной способностью топлива

Для установления связи между теплотой горения и теплотворной способностью вещества необходимо записать уравнение химической реакции горения.

Продуктом полного горения углерода является диоксид углерода:

С+О 2 →СО 2 .

Продуктом полного горения водорода является вода:

2Н 2 +О 2 →2Н 2 О.

Продуктом полного горения серы является диоксид серы:

S +О 2 →SO 2 .

При этом выделяются в свободном виде азот, галоиды и другие негорючие элементы.

Горючее вещество – газ

В качестве примера проведем расчет теплотворной способности метана CH 4 , для которого теплота горения равна Q г =882.6 .

· Определим молекулярную массу метана в соответствии с его химической формулой (СН 4):

М=1∙12+4∙1=16 г/моль.

· Определим теплотворную способность 1 кг метана:

· Найдем объем 1 кг метана, зная его плотность ρ=0.717 кг/м 3 при нормальных условиях:

.

· Определим теплотворную способность 1 м 3 метана:

Аналогично определяется теплотворная способность любых горючих газов. Для многих распространенных веществ значения теплоты горения и теплотворной способности были измерены с высокой точностью и приведены в соответствующей справочной литературе. Приведем таблицу значений теплотворной способности некоторых газообразных веществ (табл. 5.1). Величина Q в этой таблице приведена в МДж/м 3 и в ккал/м 3 , поскольку часто в качестве единицы теплоты используется 1 ккал = 4.1868 кДж.

Таблица 5.1

Теплотворная способность газообразных топлив

Вещество

Ацетилен

Q

Горючее вещество – жидкость или твердое тело

В качестве примера проведем расчет теплотворной способности этилового спирта С 2 Н 5 ОН, для которого теплота горения Q г = 1373.3 кДж/моль.

· Определим молекулярную массу этилового спирта в соответствии с его химической формулой (С 2 Н 5 ОН):

М = 2∙12 + 5∙1 + 1∙16 + 1∙1 = 46 г/моль.

· Определим теплотворную способность 1 кг этилового спирта:

Аналогично определяется теплотворная способность любых жидких и твердых горючих. В табл. 5.2 и 5.3 приведены значения теплотворной способности Q (МДж/кг и ккал/кг) для некоторых жидких и твердых веществ.

Таблица 5.2

Теплотворная способность жидких топлив

Вещество

Метиловый спирт

Этиловый спирт

Мазут, нефть

Q

Таблица 5.3

Теплотворная способность твердых топлив

Вещество

Дерево свежее

Дерево сухое

Бурый уголь

Торф сухой

Антрацит, кокс

Q

Формула Менделеева

Если теплотворная способность топлива неизвестна, то ее можно рассчитать с помощью эмпирической формулы, предложенной Д.И. Менделеевым. Для этого необходимо знать элементарный состав топлива (эквивалентную формулу топлива), то есть процентное содержание в нем следующих элементов:

Кислорода (О);

Водорода (Н);

Углерода (С);

Серы (S );

Золы (А);

Воды (W ).

В продуктах сгорания топлив всегда содержатся пары воды, образующиеся как из-за наличия влаги в топливе, так и при сгорании водорода. Отработанные продукты сгорания покидают промышленную установку при температуре выше температуры точки росы. Поэтому тепло, которое выделяется при конденсации водяных паров, не может быть полезно использовано и не должно учитываться при тепловых расчетах.

Для расчета обычно применяется низшая теплотворная способность Q н топлива, которая учитывает тепловые потери с парами воды. Для твердых и жидких топлив величина Q н (МДж/кг) приближенно определяется по формуле Менделеева:

Q н =0.339+1.025+0.1085 – 0.1085 – 0.025, (5.1)

где в скобках указано процентное (масс. %) содержание соответствующих элементов в составе топлива.

В этой формуле учитывается теплота экзотермических реакций горения углерода, водорода и серы (со знаком «плюс»). Кислород, входящий в состав топлива, частично замещает кислород воздуха, поэтому соответствующий член в формуле (5.1) берется со знаком «минус». При испарении влаги теплота расходуется, поэтому соответствующий член, содержащий W , берется также со знаком «минус».

Сравнение расчетных и опытных данных по теплотворной способности разных топлив (дерево, торф, уголь, нефть) показало, что расчет по формуле Менделеева (5.1) дает погрешность, не превышающую 10%.

Низшая теплотворная способность Q н (МДж/м 3) сухих горючих газов с достаточной точностью может быть рассчитана как сумма произведений теплотворной способности отдельных компонентов и их процентного содержания в 1 м 3 газообразного топлива.

Q н = 0.108[Н 2 ] + 0.126[СО] + 0.358[СН 4 ] + 0.5[С 2 Н 2 ] + 0.234[Н 2 S ]…, (5.2)

где в скобках указано процентное (объем. %) содержание соответствующих газов в составе смеси.

В среднем теплотворная способность природного газа составляет примерно 53.6 МДж/м 3 . В искусственно получаемых горючих газах содержание метана СН 4 незначительно. Основными горючими составляющими являются водород Н 2 и оксид углерода СО. В коксовальном газе, например, содержание Н 2 доходит до (55 ÷ 60)%, а низшая теплотворная способность такого газа достигает 17.6 МДж/м 3 . В генераторном газе содержание СО ~ 30% и Н 2 ~15%, при этом низшая теплотворная способность генераторного газа Q н = (5.2÷6.5) МДж/м 3 . В доменном газе содержание СО и Н 2 меньше; величина Q н = (4.0÷4.2) МДж/м 3 .

Рассмотрим примеры расчета теплотворной способности веществ по формуле Менделеева.

Определим теплотворную способность угля, элементный состав которого приведен в табл. 5.4.

Таблица 5.4

Элементный состав угля

· Подставим приведенные в табл. 5.4 данные в формулу Менделеева (5.1) (азот N и зола A в эту формулу не входят, поскольку являются инертными веществами и не участвуют в реакции горения):

Q н =0.339∙37.2+1.025∙2.6+0.1085∙0.6–0.1085∙12–0.025∙40=13.04 МДж/кг.

Определим количество дров, необходимое для нагрева 50 литров воды от 10° С до 100° С, если на нагревание расходуется 5% теплоты, выделяемой при горении, а теплоемкость воды с =1 ккал/(кг∙град) или 4.1868 кДж/(кг∙град). Элементный состав дров приведен в табл. 5.5:

Таблица 5.5

Элементный состав дров

· Найдем теплотворную способность дров по формуле Менделеева (5.1):

Q н =0.339∙43+1.025∙7–0.1085∙41–0.025∙7= 17.12 МДж/кг.

· Определим количество теплоты, расходуемое на нагрев воды, при сгорании 1 кг дров (с учетом того, что на ее нагрев расходуется 5% теплоты (a =0.05), выделяемой при горении):

Q 2 =a Q н =0.05·17.12=0.86 МДж/кг.

· Определим количество дров, необходимое для нагрева 50 литров воды от 10° С до 100° С:

кг.

Таким образом, для нагрева воды требуется около 22 кг дров.